Skip to main content
Log in

Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The isotopic composition of SO 2-4 in bulk precipitation, canopy throughfall, seepage water at three different soil depths, stream water, and groundwater was monitored in two forested catchments in the Black Forest (Germany) between November 1989 and February 1992. Isotope measurements on aqueous sulfate were complemented by δ34S-analyses on SO2 in the air, total sulfur and inorganic sulfate in the soil, and bedrock sulfur, in order to identify sources and biogeochemical processes affecting S cycling in catchments with base poor, siliceous bedrock. Stable S isotope data indicated that atmospheric deposition and not mineral weathering is the major source of S in both catchments since δ34S-values for sulfate in the soil, in seepage water, and in stream water were generally found to be similar to the mean δ34S-values of precipitation SO 2-4 (+2.1. However, δ18O-values of seepage water SO 2-4 at 30 cm and especially at 80 cm depth were depleted by several per mil with respect to those of the atmospheric deposition (+7.5 to +13.5. This indicates that in both catchments a considerable proportion of the seepage water SO 2-4 is derived from mineralization of carbon-bonded soil S and must therefore have cycled through the organic soil S pool. δ34S-values for different S compounds in the solid soil were found to differ markedly depending on S fraction and soil depth. Since atmospheric S deposition with rather constant δ34S-values was identified as the dominant S source in both catchments, this is interpreted as a result ofin situ isotope fractionation rather than admixture of isotopically different S. The differences between the δ34S-values of seepage water and soil sulfate and those of organic soil S compounds are consistent with a model in which SO 2-4 uptake by vegetation and soil microorganisms favours34SO 2-4 slightly, whereas during mineralization of organic soil S to aqueous SOSO 2-4 ,32S reacts preferentially. However, the data provide evidence for negligible isotope fractionation during physico-chemical S transformations such as adsorption/desorption in aerated forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ASTM (1993) Standard test methods for total sulfur in the analysis sample of coal and coke. Annual Book of ASTM Standards Vol. 05.05. D 3177-89: 333–336

    Google Scholar 

  • Andreae MO & Jaeschke WA (1992) Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions. In: Howarth RW Stewart JWB & Ivanov MV (Eds) SCOPE 48: Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (pp. 27–61). John Wiley & Sons, Chichester

    Google Scholar 

  • Binkley D, Driscoll CT, Allen HL, Schoeneberger P. & McAvoy D (1989) Acid Deposition and forest soils. Ecological Studies 72. Springer-Verlag, New York

    Google Scholar 

  • Brahmer G (1990) Wasser- und Stoffbilanzen bewaldeter Einzugsgebiete im Schwarzwald unter besonderer Berücksichtigung naturräumlicher Ausstattungen und atmogener Einträge. Freiburger Bodenkundl. Abh. 25: 1–295

    Google Scholar 

  • Brahmer G & Feger KH (1991) Hydrochemical budgets for experimental watersheds affected by nitrogen and sulfur treatments. IAHS-Publ. 204: 443–455

    Google Scholar 

  • Bremner JM & Steele CG (1978) Role of microorganisms in the atmospheric sulphur cycle. Adv. Microb. Ecol. 2: 155–201

    Google Scholar 

  • Buell GR & Peters NE (1988) Atmospheric deposition effects on the chemistry of a stream in northeastern Georgia. Water, Air, Soil Pollut. 39: 275–291

    Google Scholar 

  • Bücking WF Evers H & Krebs A (1983) Bioelementgehalte der Niederschlags-, Sicker- und Bodenwässerin Abhängigkeit von Baumart und Standort. Forstw. Centralbl. 102: 293–297

    Google Scholar 

  • Caron F Tessier A, Kramer JR, Schwarcz HP & Rees CE (1986) Sulfur and oxygen isotopes of sulfate in precipitation and lakewater, Quebec, Canada. Appl. Geochem. 1: 601–606

    Google Scholar 

  • Chiba H & Sakai H (1985) Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochim. Cosmochim. Acta 49: 993–1000

    Google Scholar 

  • Dämmgen U., Grünhage L & Jäger HJ (1985) System zur flächendeckenden Erfassung von luftgetragenen Schadstoffen und ihren Wirkungen auf Pflanzen. Landschaftsökologisches Messen und Auswerten 1: 95–106

    Google Scholar 

  • David MB, Mitchell MJ & Scott TJ (1987) Importance of biological processes in the sulfur budget of a northern hardwood ecosystem. Biol. Fertil. Soils 5: 258–264

    Google Scholar 

  • Epstein S & Mayeda TK (1953) Variation of 018 content of waters from natural sources. Geochim. Cosmochim. Acta 4: 213–224

    Google Scholar 

  • Feger KH (1993) Bedeutung von ökosystemintemen Umsätzen und Nutzungseingriffen für den Stoffhaushalt von Waldlandschaften. Freiburger Bodenkundl. Abh. 31: 1–236

    Google Scholar 

  • Feger KH (1995) Solute fluxes and sulfur cycling in forested catchments in SW Germany as influenced by experimental (NH4)2SO4 treatments. Water, Air, Soil Pollut. 79: 109–130

    Google Scholar 

  • Feger KH, Brahmer G & Zöttl HW, (1990) Element budgets of two contrasting catchments in the Black Forest (Federal Republic of Germany). J. Hydrol. 116: 85–99

    Google Scholar 

  • Feger KH, Brahmer G & Zöttl HW, (1993) Projekt ARINUS: VII.Zwischenbilanz und Perspektiven. KfK/PEF-Berichte 104: 23–40

    Google Scholar 

  • Freney (1967) Sulfur-containing organics. In: McLaren AD & Peterson GH (Eds) Soil Biochemistry 1: 229–259. Marcel Dekker Inc., New York

  • Führer HW, Brechtel HM, Ernstberger H & Erpenbeck C (1988) Ergebnisse von neuen Depositionsmessungen in der Bundesrepublik Deutschland und im benachbarten Ausland. DVWK Mitteilungen 14: 1–66

    Google Scholar 

  • Fuller RD, Mitchell MJ, Krouse HR, Wyskowski BJ & Driscoll CT (1986) Stable sulfur isotope ratios as a tool for interpreting ecosystem sulfur dynamics. Water, Air, Soil Pollut. 28: 163–171

    Google Scholar 

  • Germida JJ, Wainwright M & Gupta VVSR (1992) Biochemistry of sulfur cycling in soil. In: Stotzky G & Bollag JM (Eds) Soil Biochemistry 7: 1–53. Marcel Dekker Inc., New York

  • Gélineau M, Carignan R & Tessier A (1989) Study of the transit of sulfate in a Canadian Shield lake watershed with stable oxygen isotope ratios. Appl. Geochem. 4: 195–201

    Google Scholar 

  • Giesemann A, Jäger HJ, Norman AL, Krouse HR & Brand WA (1994) On-line sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal. Chem. 66: 2816–2819

    Google Scholar 

  • Grey DC & Jensen ML (1972) Bacteriogenic sulfur in air pollution. Science 177: 1099–1100

    Google Scholar 

  • Hesslein RH, Capel MJ & Fox DE (1988) Sulfur isotopes in sulfate in the inputs and outputs of a Canadian Shield watershed. Biogeochemistry 5: 263–273

    Google Scholar 

  • Holt BD (1991) Oxygen isotopes. In: Krouse HR & Grinenko VA (Eds) SCOPE 43: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (pp. 55–64). J. Wiley & Sons, Chichester

    Google Scholar 

  • Johnson DW (1984) Sulfur cycling in forests. Biogeochemistry 1: 29–43

    Google Scholar 

  • Johnson DW, Richter DD, Van Miegroet H, Cole DW & Kelly JM (1986) Sulfur cycling in five forested ecosystems. Water, Air, Soil Pollut. 30: 965–979

    Google Scholar 

  • Kiba T, Takagi T, Yoshimura Y & Kishi I (1955) Tin-(II)-strong phosphoric acid. — A new reagent for the determination of sulfate by reduction to hydrogen sulfide. Bull. Chem. Soc. Japan 28: 641–644

    Google Scholar 

  • Krouse HR (1980) Sulphur isotopes in our environment. In: Fritz P & Fontes JCh (Eds) Hanbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment A (pp. 435–471). Elsevier, Amsterdam

    Google Scholar 

  • Krug EC (1991) Review of acid-deposition-catchment interaction and comments on future reserach needs. J. Hydrol. 128: 1–27

    Google Scholar 

  • Kurth F, Feger KH & Fischer M (1989) Sulfatadsorptionskapazität und Schwefelbindungsformen in Böden des Schwarzwaldes. DVWK-Mitteilungen 17: 149–156

    Google Scholar 

  • LfU Baden-Württemberg (1992) Die Luft in Baden-Württemberg. Berichte der Landesanstalt für Umweltschutz Baden-Württemberg 5: 1–79

    Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS & Johnson NM (1977) Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York

    Google Scholar 

  • Lindberg SE, Lovett GM, Richter DD & Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141–145

    Google Scholar 

  • Lindberg SE & Garten CT (1988) Sources of sulphur in forest canopy throughfall. Nature 336: 148–151

    Google Scholar 

  • Lovelock JE, Maggs RJ & Rasmussen RA (1972) Atmospheric dimethyl sulphide in the natural sulfur cycle. Nature 237: 452–453

    Google Scholar 

  • Mayer B, Fritz P, Prietzel J & Krouse HR (1995) The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl. Geochem. 10: 161–173

    Google Scholar 

  • Meiwes KJ & Khanna PK (1981) Distribution and cycling of sulphur in the vegetation of two forest ecosystems in an acid rain environment. Plant and Soil 60: 369–375

    Google Scholar 

  • Mitchell MJ, David MB, Maynard DG & Telang SA (1986) Sulfur constituents in soils and streams of a watershed in the Rocky Mountains of Alberta. Can. J. For. Res. 16: 315–320

    Google Scholar 

  • Mitchell MJ, David MB & Harrison RB (1992) Sulphur dynamics of forest ecosystems. In: Howarth RW Stewart JWB & Ivanov MV (Eds) SCOPE 48: Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (pp.215–254). John Wiley & Sons, Chichester

    Google Scholar 

  • Newman L, Krouse HR & Grinenko VA (1991) Sulphur isotope variations in the atmosphere. In: Krouse HR & Grinenko VA (Eds) SCOPE 43: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (pp. 133–176).J. Wiley & Sons, Chichester

    Google Scholar 

  • Nielsen H (1974) Isotopic composition of the major contributors to atmospheric sulfur. Tellus 26: 213–221

    Google Scholar 

  • Nriagu JO, Coker RD & Barrie LA (1991) Origin of sulphur in Canadian Arctic haze from isotope measurements. Nature 349: 142–145

    Google Scholar 

  • Rochelle BP, Church MR & David MB (1987) Sulfur retention at intensively studied sites in the US and Canada. Water, Air, Soil Pollut. 33: 73–83

    Google Scholar 

  • Rolland W, Giesemann A, Feger KH & Jäger HJ (1991) Use of stable S isotopes in the assessment of S turnover in experimental forested watersheds in the Black Forest, Southwest Federal Republic of Germany. In: Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies (pp. 593–598). IAEA, Vienna

    Google Scholar 

  • Saltzman ES, Brass GW & Price DA (1983) The mechanism of sulfate aerosol formation: chemical and sulfur isotopic evidence. Geophys. Res. Lett. 10: 513–516

    Google Scholar 

  • Sasaki A, Arikawa Y & Folinsbee RE (1979) Kiba reagent method of sulfur extraction applied to isotopic work. Bull. Geol. Surv. Japan 30: 241–245

    Google Scholar 

  • Schoenau JJ & Bettany JR (1987) Organic matter leaching as a component of carbon, nitrogen, phosphorus, and sulfur cycles in a forest, grassland, and gleyed soil. Soil Sci. Soc. Am. J. 51: 646–651

    Google Scholar 

  • Schoenau JJ & Bettany JR (1989)34S natural abundance variations in prairie and boreal forest soils. J. Soil Sci. 40: 397–413

    Google Scholar 

  • Stam AC, Mitchell MJ, Krouse HR & Kahl JS (1992) Stable sulfur isotopes of sulfate in precipitation and stream solutions in a northern hardwood watershed. Water Resour. Res. 28: 231–236

    Google Scholar 

  • Staubes R, Georgii HW & Ockelmann G (1989) Fluxes of COS, DMS and CS2 from various soils in Germany. Tellus 41B: 305–313

    Google Scholar 

  • Swank WT & Crossley DA (1988) Forest Hydrology and Ecology at Coweeta. Springer-Verlag, Berlin

    Google Scholar 

  • Trudinger PA & Loughlin RE (1981) Metabolism of simple sulphur compounds. In: Neuberger A & Van Deenen LLM (Eds) Comprehensive Biochemistry Volume 19A: Amino Acid Metabolism and Sulphur metabolism (pp. 165–256). Elsevier, Amsterdam

  • Ueda A & Krouse HR (1986) Direct conversion of sulphide and sulphate minerals to SO2 for isotope analyses. Geochem. J. 20: 209–212

    Google Scholar 

  • Van Stempvoort DR, Reardon EJ & Fritz P (1990) Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption. Geochim. Cosmochim. Acta 54: 2817–2826

    Google Scholar 

  • Van Stempvoort DR, Fritz P & Reardon EJ (1992) Sulfate dynamics in upland forest soils, central and southern Ontario, Canada: stable isotope evidence. Appl. Geochem. 7: 159–175

    Google Scholar 

  • Van Stempvoort DR, Hendry MJ, Schoenau JJ & Krouse HR (1994) Sources and dynamics of sulfur in weathered till, Western Glaciated Plains of North America. Chem. Geol. 111: 35–56

    Google Scholar 

  • Wadleigh MA, Schwarcz HP & Kramer JR (1994) Sulphur isotope tests of seasalt correction factors in precipitation: Nova Scotia, Canada. Water, Air, Soil Pollut. 77: 1–16

    Google Scholar 

  • Yanagisawa F & Sakai H (1983) Thermal decomposition of barium sulfate -vanadium pentaoxide — silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Anal. Chem. 55: 985–987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, B., Feger, K.H., Giesemann, A. et al. Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data. Biogeochemistry 30, 31–58 (1995). https://doi.org/10.1007/BF02181039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181039

Key words

Navigation