Skip to main content
Log in

The glutathione S-transferases of fish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Substantial soluble glutathione S-transferase activity and millimolar reduced glutathione (GSH) are present in most tissues of both teleosts and elasmobranchs. The hepatic enzymes of fish conjugate a range of electrophilic substrates with GSH, although their specificities are less broad than those of the transferases in rodent liver. There is no good evidence that fish transferases have ligandin-like activity or a ‘suicide’ function. All fish livers tested have several transferase isoenzymes. They are dimers of subunits whose Mrs are about 25 kDa and which may have different catalytic properties. In some species transferase activity is induced by agents such as phenols or 3-methylcholanthrene. Glutathione S-transferases are important detoxication enzymes in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Awasthi, Y.C. and Singh, S.V. 1985. Subunit structure of human and rat glutathione S-transferases. Comp. Biochem. Physiol. 82B: 17–23.

    Google Scholar 

  • Balk, L., Knall, A. and DePierre, J.W. 1982. Separation of the different classes of conjugates formed by metabolism of benzo[a]pyrene in the Northern pike (Esox lucius). Acta Chem. Scand. B 36: 403–405.

    PubMed  Google Scholar 

  • Balk, L., Meijer, J., Seidegard, J., Morgenstern, R. and DePierre, J.W. 1980. Initial characterization of drug-metabolizing systems in the liver of the Nortern pike,Esox lucius. Drug Metab. Dispos. 8: 98–103.

    PubMed  Google Scholar 

  • Bass, N.M., Kirsch, R.E., Tuff, S.A., Marks, I. and Saunders, S.J. 1977. Ligandin heterogeneity: evidence that the two nonidentical subunits are the monomers of two distinct proteins. Biochim. Biophys. Acta 492: 163–175.

    PubMed  Google Scholar 

  • Bell, J.G., Cowey, C.B. and Youngson, A. 1984. Rainbow trout liver microsomal lipid peroxidation. The effect of purified glutathione peroxidase, glutathione S-transferase and other factors. Biochim. Biophys. Acta 795: 91–99.

    PubMed  Google Scholar 

  • Bell, J.G., Pirie, B.J.S., Adron, J.W. and Cowey, C.B. 1986. Some effects of selenium deficiency on glutathione peroxidase (EC 1.11.1.9) activity and tissue pathology in rainbow trout (Salmo gairdneri). Br. J. Nutr. 55: 305–311.

    PubMed  Google Scholar 

  • Bend, J.R. and James, M.O. 1978. Xenobiotic metabolism in marine and freshwater species.In Biochemical and Biophysical Perspectives in Marine Biology, Vol. 4, pp. 125–188. Edited by D.C. Malins and J.R. Sargent. Academic Press, London.

  • Benke, G.M., Cheever, K.L., Mirer, F.E. and Murphy, S.D. 1974. Comparative toxicity, anticholinesterase action and metabolism of methyl parathion and parathion in sunfish and mice. Toxicol. Appl. Pharmacol. 28: 97–109.

    PubMed  Google Scholar 

  • Boyer, T.D., Vessey, D.A., Holcomb, C. and Saley, N. 1984. Studies of the relationship between the catalytic activity and binding of non-substrate ligands by the glutathione S-transferases. Biochem. J. 217: 179–185.

    PubMed  Google Scholar 

  • Boyland, E. and Chasseaud, L.F. 1969. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv. Enzymol. 32: 172–219.

    Google Scholar 

  • Chatterjee, S. and Bhattacharya, S. 1984. Detoxication of industrial pollutants by the glutathione S-transferase system in the liver ofAnabas testudineus (Bloch). Toxicol. Lett. 22: 187–198.

    PubMed  Google Scholar 

  • Clark, A.G. and Carrol, N. 1986. Suppression of high-affinity ligand binding to the major glutathione S-transferase fromGalleria mellonella by physiological concentrations of glutathione. Biochem. J. 233: 325–331.

    PubMed  Google Scholar 

  • Cowey, C.B., Bell, J.G., Knox, D., Fraser, A. and Youngson, A. 1985. Lipids and lipid antioxidant systems in developing eggs of salmon (Salmo salar). Lipids 20: 567–572.

    Google Scholar 

  • Danielson, U.H. and Mannervik, B. 1985. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem. J. 231: 263–267.

    PubMed  Google Scholar 

  • Dierickx, P.J. 1985a. Hepatic glutathione S-transferases in rainbow trout and their interaction with 2,4-dichlorophenoxyacetic acid and 1,4-benzoquinone. Comp. Biochem. Physiol. 82C, 495–500.

    Google Scholar 

  • Dierickx, P.J. 1985b. Purification and partial characterization of the glutathione S-transferases in carp liver, and their interaction with 2,4-dichlorophenoxyacetic acid and 1,4-benzoquinone. Biochem. Int. 11: 755–763.

    PubMed  Google Scholar 

  • Foureman, G.L. and Bend, J.R. 1984. The hepatic glutathione transferases of the male little skate,Raja erinacea. Chem. Biol. Interact. 49: 89–103.

    PubMed  Google Scholar 

  • George, S.G. and Young, P. 1986. The time course of effects of cadmium and 3-methylcholanthrene on activities of enzymes of xenobiotic metabolism and metallothionein levels in the plaice,Pleuronectes platessa. Comp. Biochem. Physiol. 83C: 37–44.

    Google Scholar 

  • Gregus, Z., Watkins, J.B., Thompson, T.N., Harvey, M.J., Rozman, K. and Klaassen, C.D. 1983. Hepatic phase I and phase 11 biotransformations in quail and trout: comparison to other species commonly used in toxicity testing. Toxicol. Appl. Pharmacol. 67: 430–441.

    PubMed  Google Scholar 

  • Hayes, J.D. and Mantle, T.J. 1986a. Inhibition of hepatic and extrahepatic glutathione S-transferases by primary and secondary bile acids. Biochem. J. 233: 407–415.

    PubMed  Google Scholar 

  • Hayes, J.D. and Mantle, T.J. 1986b. Anomalous electrophoretic behaviour of the glutathione S-transferase Ya and Yk subunits isolated from man and rodents. A potential pitfall for nomenclature. Biochem. J. 237: 731–740.

    PubMed  Google Scholar 

  • Hollingworth, R.M. 1977. Biochemistry and significance of transferase reactions in the metabolism of foreign chemicals.In Handbook of Physiology. Section 9: Reactions to Environmental Agents, pp. 455–468. Edited by D.H.K. Lee. American Physiological Society, Bethesda.

    Google Scholar 

  • Igwe, O.J. 1986. Biologically active intermediates generated by the reduced glutathione conjugation pathway. Toxicological implications. Biochem. Pharmacol. 35: 2987–2994.

    PubMed  Google Scholar 

  • Jakoby, W.B. 1978. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv. Enzymol. 46: 383–414.

    PubMed  Google Scholar 

  • Jakoby, W.B., Ketterer, B. and Mannervik, B. 1984. Glutathione transferases: nomenclature. Biochem. Pharmacol. 33: 2539–2540.

    PubMed  Google Scholar 

  • James, M.O., Bowen, E.R., Dansette, P.M. and Bend, J.R. 1979. Epoxide hydrase and glutathione S-transferase activities with selected alkene and arene oxides in several marine species. Chem. - Biol. Interact. 25: 321–344.

    PubMed  Google Scholar 

  • Jensson, H., Eriksson, L.C. and Mannervik, B. 1985. Selective expression of glutathione transferase isoenzymes in chemically induced preneoplastic rat hepatocyte nodules. FEBS Lett. 187: 115–120.

    PubMed  Google Scholar 

  • Jensson, H., Guthenberg, C., Ålin, P. and Mannervik, B. 1986. Rat glutathione transferase 8-8, an enzyme efficiently detoxifying 4-hydroxyalk-2-enals. FEBS Lett. 203: 207–209.

    PubMed  Google Scholar 

  • Lay, M.M. and Menn, J.J. 1979. Mercapturic acid occurence in fish bile. A terminal product of metabolism of the herbicide molinate. Xenobiotica 9: 669–673.

    PubMed  Google Scholar 

  • Levine, R.I., Reyes, H., Levi, A.J., Gatmaitan, Z. and Arias, I. M. 1971. Phylogenetic study of organic anion transfer from plasma into the liver. Nature New Biol. 231: 277–279.

    PubMed  Google Scholar 

  • Loveland, P.M., Nixon, J.E. and Bailey, G.S. 1984. Glucuronides in bile of rainbow trout (Salmo gairdneri) injected with [3H]aflatoxin B1, and the effects of dietary βnaphthoflavone. Comp. Biochem. Physiol. 78C: 13–19.

    Google Scholar 

  • Malins, D.C. 1977. Metabolism of aromatic hydrocarbons in marine organisms. Ann. N.Y. Acad. Sci. 298: 482–496.

    Google Scholar 

  • Mannervik, B. 1985. The isoenzymes of glutathione transferase. Adv. Enzymol. 57: 357–417.

    PubMed  Google Scholar 

  • Mannervik, B. and Guthenberg, C. 1981. Glutathione transferase: human placenta. Methods Enzymol. 77: 231–235.

    PubMed  Google Scholar 

  • Meyer, D.J. and Ketterer, B. 1982. 5α,6α-Epoxy-cholestan-3β-ol (cholesterol α-oxide): a specific substrate for rat liver glutathione transferase B. FEBS Lett. 150: 499–502.

    PubMed  Google Scholar 

  • Morgenstern, R., Lundqvist, G., Andersson, G., Balk, L. and DePierre, J.W. 1984. The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms. Biochem. Pharmacol. 33: 3609–3614.

    PubMed  Google Scholar 

  • Nimmo, I. A. 1985. The glutathione S-transferase activity in the gills of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 80B: 365–369.

    Google Scholar 

  • Nimmo, I.A. 1986. The glutathione S-transferase activity in the pyloric caeca of rainbow trout,Salmo gairdneri. Comp. Biochem. Physiol. 83B: 831–835.

    Google Scholar 

  • Nimmo, I.A. and Spalding, C.M. 1985. The glutathione S-transferase activity in the kidney of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 82B: 91–94.

    Google Scholar 

  • Nimmo, I.A., Clapp, J.B. and Strange, R.C. 1979. A comparison of the glutathione S-transferases of trout and rat liver. Comp. Biochem. Physiol. 63B: 423–427.

    Google Scholar 

  • Nimmo, I.A., Coghill, D.R., Hayes, J.D. and Strange, R.C. 1981. A comparison of the subcellular distribution, subunit composition and bile acid-binding activity of glutathione S-transferases from trout and rat liver. Comp. Biochem. Physiol. 68B: 579–584.

    Google Scholar 

  • Pierce, S. and Tappel, A. L. 1978. Glutathione peroxidase activities from rat liver. Biochem. Biophys. Acta 523: 27–36.

    PubMed  Google Scholar 

  • Ramage, P.I.N. and Nimmo, I.A. 1983. The purification of the hepatic glutathione S-transferases of rainbow trout by glutathione affinity chromatography alters their isoelectric behaviour. Biochem. J. 211: 523–526.

    PubMed  Google Scholar 

  • Ramage, P.I.N. and Nimmo, I.A. 1984. The substrate specificities and subunit compositions of the hepatic glutathione S-transferases of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 78B: 189–194.

    Google Scholar 

  • Ramage, P.I.N., Rae, G.H. and Nimmo, I.A. 1986. Purification and properties of the hepatic glutathione S-transferases of the Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. 83B: 23–29.

    Google Scholar 

  • Senjo, M., Ishibashi, T. and Imai, Y. 1985. Purification and characterization of cytosolic liver protein facilitating heme transport into apocytochrome b5 from mitochondria. Evidence for identifying the heme transfer protein as belonging to a group of glutathione S-transferases. J. Biol. Chem. 260: 9191–9196.

    PubMed  Google Scholar 

  • Simons, P.C. and Vander Jagt, D.L. 1977. Purification of glutathione S-transferases from human liver by glutathione-affinity chromatography. Anal. Biochem. 82: 334–341.

    PubMed  Google Scholar 

  • Strange, R.C., Davis, B.A., Faulder, C.G., Cotton, W., Bain, D.A., Hopkinson, D.A. and Hume, R. 1985. The human glutathione S-transferases: developmental aspects of the GST1, GST2, and GST3 loci. Biochem. Genet. 23: 1011–1028.

    PubMed  Google Scholar 

  • Sugiyama, Y., Yamada, T. and Kaplowitz, N. 1981. Glutathione S-transferases in elasmobranch liver. Molecular heterogeneity, catalytic and binding properties, and purification. Biochem. J. 199: 749–756.

    PubMed  Google Scholar 

  • Sugiyama, Y., Sugimoto, M., Stolz, A. and Kaplowitz, N. 1984. Comparison of the binding affinities of five forms of rat glutathione S-transferases for bilirubin, sulfobromophthalein and haematin. Biochem. Pharmacol. 33: 3511–3513.

    PubMed  Google Scholar 

  • Wittenberg, J.B. 1970. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol. Rev. 50: 559–636.

    PubMed  Google Scholar 

  • Yagen, B., Foureman, G.L., Ben-Zvi, Z., Ryan, A.J., Hernandez, O., Cox, R.H. and Bend, J.R. 1984. The metabolism and excretion of14C-styrene oxide-glutathione adducts administered to the winter flounder,Pseudopleuronectes americanus, a marine teleost. Identification of the corresponding S-cysteine derivatives as major urinary metabolites. Drug Metab. Dispos. 12: 389–395.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimmo, I.A. The glutathione S-transferases of fish. Fish Physiol Biochem 3, 163–172 (1987). https://doi.org/10.1007/BF02180277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180277

Keywords

Navigation