Journal of Statistical Physics

, Volume 78, Issue 5–6, pp 1555–1570 | Cite as

Approximation of the Boltzmann equation by discrete velocity models

  • Wolfgang Wagner


Two convergence results related to the approximation of the Boltzmann equation by discrete velocity models are presented. First we construct a sequence of deterministic discrete velocity models and prove convergence (as the number of discrete velocities tends to infinity) of their solutions to the solution of a spatially homogeneous Boltzmann equation. Second we introduce a sequence of Markov jump processes (interpreted as random discrete velocity models) and prove convergence (as the intensity of jumps tends to infinity) of these processes to the solution of a deterministic discrete velocity model.

Key Words

Boltzmann equation discrete velocity models weak convergence random mass flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. O. Barrachina, Wild's solution of the nonlinear boltzmann equation,J. Stat. Phys. 52(1/2):357–368 (1988).Google Scholar
  2. 2.
    J.-M. Bony, Existence globale à données de Cauchy petites pour les modèles discrets de l'équation de Boltzmann,Commun. Partial Differential Equations 16(4&5):533–545 (1991).Google Scholar
  3. 3.
    C. Cercignani,The Boltzmann Equation and its Applications (Springer, New York, 1988).Google Scholar
  4. 4.
    S. N. Ethier and T. G. Kurtz,Markov Processes, Characterization and Convergence (Wiley, New York, 1986).Google Scholar
  5. 5.
    R. Illner and W. Wagner, A random discrete velocity model and approximation of the Boltzmann equation,J. Stat. Phys. 70(3/4):773–792 (1993).Google Scholar
  6. 6.
    J. L. Lebowitz and E. W. Montroll, eds.,Nonequilibrium Phenomena. I. The Boltzmann Equation (North-Holland, Amsterdam, 1983).Google Scholar
  7. 7.
    Y. L. Martin, F. Rogier, and J. Schneider, A deterministic method for solving the nonhomogeneous Boltzmann equation,C. R. Acad. Sci. Paris I Math. 314(6):483–487 (1992).Google Scholar
  8. 8.
    H. P. McKean, Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas,Arch. Rat. Mech. Anal. 21:343–367 (1966).Google Scholar
  9. 9.
    N. A. Nurlybaev, Discrete velocity method in the theory of kinetic equations,Transport Theory Stat. Phys. 22(1):109–119 (1993).Google Scholar
  10. 10.
    T. Płatkowski and R. Illner, Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory,SIAM Rev. 30(2):213–255 (1988).Google Scholar
  11. 11.
    A. S. Sznitman, Équations de type de Boltzmann, spatialement homogènes,Z. Wahrsch. Verw. Geb. 66(4):559–592 (1984).Google Scholar
  12. 12.
    H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,Z. Wahrsch. Verw. Geb. 46(1):67–105 (1978).Google Scholar
  13. 13.
    W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation,J. Stat. Phys. 66(3/4):1011–1044 (1992).Google Scholar
  14. 14.
    E. Wild, On Boltzmann's equation in the kinetic theory of gases,Proc. Camb. Phil. Soc. 47:602–609 (1951).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Wolfgang Wagner
    • 1
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations