Journal of Statistical Physics

, Volume 78, Issue 5–6, pp 1253–1276 | Cite as

The chiral potts model and its associated link invariant

  • F. Y. Wu
  • P. Pant
  • C. King


A new link invariant is derived using the exactly solvable chiral Potts model and a generalized Gaussian summation identity. Starting from a general formulation of link invariants using edge-interaction spin models, we establish the uniqueness of the invariant for self-dual models. We next apply the formulation to the self-dual chiral Potts model, and obtain a link invariant in the form of a lattice sum defined by a matrix associated with the link diagram. A generalized Gaussian summation identity is then used to carry out this lattice sum, enabling us to cast the invariant into a tractable form. The resulting expression for the link invariant is characterized by roots of unity and does not appear to belong to the usual quantum group family of invariants. A table of invariants for links with up to eight crossings is given.

Key Words

Link invariants chiral Potts model generalized Gaussian summation identity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. F. R. Jones,Pacific J. Math. 137:311 (1989).Google Scholar
  2. 2.
    M. Wadati, T. Deguchi, and Y. Akutsu,Phys. Rep. 180:247 (1989).Google Scholar
  3. 3.
    F. Y. Wu,Rev. Mod. Phys. 64:1099 (1992).Google Scholar
  4. 4.
    V. F. R. Jones,Bull. Am. Math. Soc. 12:103 (1985).Google Scholar
  5. 5.
    P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett, and A. Ocneanu,Bull. Am. Math. Soc. 12:239 (1985).Google Scholar
  6. 6.
    D. Goldschmidt and V. F. R. Jones,Geom. Dedicata 31:165 (1989); V. F. R. Jones, Commun. Math. Phys.125:459 (1989).Google Scholar
  7. 7.
    E. Date, M. Jimbo, K. Miki, and T. Miwa,Pacific J. Math. 154:37 (1992).Google Scholar
  8. 8.
    F. Jaeger,Geom. Dedicata 44:23 (1992).Google Scholar
  9. 9.
    P. de la Harpe and V. F. R. Jones,J. Comb. Theory B 57:207 (1993).Google Scholar
  10. 10.
    E. Bannai and E. Bannai,Mem. Fac. Sci. Kyushu Univ. A 47:397 (1993).Google Scholar
  11. 11.
    P. de la Harpe,Pacific J. Math. 162:57 (1994).Google Scholar
  12. 12.
    F. Y. Wu, P. Pant, and C. King,Phys. Rev. Lett. 72:3937 (1994).Google Scholar
  13. 13.
    H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, and M. L. Yan,Phys. Lett. 123A:219 (1987).Google Scholar
  14. 14.
    R. J. Baxter, J. H. H. Perk, and H. Au-Yang,Phys. Lett A 128:138 (1988).Google Scholar
  15. 15.
    C. L. Siegel,Nachr. Akad. Wiss. Göttingen Math.-Phys. Klasse 1:1 (1960).Google Scholar
  16. 16.
    T. Kobayashi, H. Murakami and J. Murakami,Proc. Japan Acad. 64A:235 (1988).Google Scholar
  17. 17.
    R. J. Baxter, S. B. Kelland, and F. Y. Wu,J. Phys. A 9:397 (1976).Google Scholar
  18. 18.
    K. Reidemeister,Knotentheorie (Chelsea, New York, 1948).Google Scholar
  19. 19.
    F. Y. Wu and Y. K. Wang,J. Math. Phys. 17:439 (1976).Google Scholar
  20. 20.
    V. A. Fateev and A. B. Zamolodchikov,Phys. Lett. A 92:37 (1982).Google Scholar
  21. 21.
    F. Harary,Graph Theory (Addison-Wesley, New York, 1971).Google Scholar
  22. 22.
    L. Goeritz,Math. Z 36:647 (1933).Google Scholar
  23. 23.
    G. Burde and H. Zieschang,Knots (Walter de Gruyter, New York, 1985).Google Scholar
  24. 24.
    L. A. Traldi,Math. Z. 188:203 (1985).Google Scholar
  25. 25.
    Y. Akutsu and M. Wadati,J. Phys. Soc. Japan 56:3039 (1987).Google Scholar
  26. 26.
    W. B. R. Lickorish and K. C. Millett,Math. Mag. 61:3 (1988).Google Scholar
  27. 27.
    J. W. S. Cassels,Rational Quadratic Forms (Academic Press, London, 1972).Google Scholar
  28. 28.
    C. F. Gauss,Summatio quarundam serierum singularium, 1808, inWerke II (Göttingen, 1870).Google Scholar
  29. 29.
    A. Krazer, inFestschrift H. Weber (Leipzig u., Berlin, 1912).Google Scholar
  30. 30.
    M. Eichler,Quadratische Formen und Orthogonale Gruppen (Springer-Verlag, Berlin, 1952).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • F. Y. Wu
    • 1
  • P. Pant
    • 1
  • C. King
    • 2
  1. 1.Department of PhysicsNortheastern UniversityBoston
  2. 2.Department of MathematicsNortheastern UniversityBoston

Personalised recommendations