Journal of Statistical Physics

, Volume 78, Issue 5–6, pp 1195–1251 | Cite as

Discrete symmetry groups of vertex models in statistical mechanics

  • S. Boukraa
  • J. -M. Maillard
  • G. Rollet
Articles

Abstract

We analyze discrete symmetry groups of vertex models in lattice statistical mechanics represented as groups of birational transformations. They can be seen as generated by involutions corresponding respectively to two kinds of transformations onq×q matrices: the inversion of theq×q matrix and an (involutive) permutation of the entries of the matrix. We show that the analysis of the factorizations of the iterations of these transformations is a precious tool in the study of lattice models in statistical mechanics. This approach enables one to analyze two-dimensionalq4-state vertex models as simply as three-dimensional vertex models, or higher-dimensional vertex models. Various examples of birational symmetries of vertex models are analyzed. A particular emphasis is devoted to a three-dimensional vertex model, the 64-state cubic vertex model, which exhibits a polynomial growth of the complexity of the calculations. A subcase of this general model is seen to yield integrable recursion relations. We also concentrate on a specific two-dimensional vertex model to see how the generic exponential growth of the calculations reduces to a polynomial growth when the model becomes Yang-Baxter integrable. It is also underlined that a polynomial growth of the complexity of these iterations can occur even for transformations yielding algebraic surfaces, or higher-dimensional algebraic varieties.

Key Words

Birational transformations vertex models inversion trick discrete dynamical systems nonlinear recursion relations iterations integrable mappings elliptic curves Abelian surfaces Jacobian of algebraic curves automorphisms of algebraic varieties complexity of iterations polynomial growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Boukraa, J. M. Maillard, and G. Rollet, Determinantal identities on integrable mappings,Int. J. Mod. Phys. B 8:2157–2201 (1994).Google Scholar
  2. 2.
    S. Boukraa, J.-M. Maillard, and G. Rollet, Integrable mappings and polynomial growth,Physica A 208:115–175 (1994).Google Scholar
  3. 3.
    S. Boukraa, J.-M. Maillard, and G. Rollet, Almost integrable mappings,Int. J. Mod. Phys. B 8:137–174 (1994).Google Scholar
  4. 4.
    J. M. Maillard, Exactly solvable models in statistical mechanics and automorphisms of algebraic varieties,Progress in Statistical Mechanics, Vol. 3, C.-K. Hu, ed. (World Scientific, Singapore, 1988).Google Scholar
  5. 5.
    M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Integrable Coxeter groups,Phys. Lett. A 159:221–232 (1991).Google Scholar
  6. 6.
    M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Higher dimensional mappings,Phys. Lett. A 159:233–244 (1991).Google Scholar
  7. 7.
    M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Infinite discrete symmetry group for the Yang-Baxter equations: Spin models,Phys. Lett. A 157:343–353 (1991).Google Scholar
  8. 8.
    M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Infinite discrete symmetry group for the Yang-Baxter equations: Vertex models,Phys. Lett. B 260:87–100 (1991).Google Scholar
  9. 9.
    M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Rational mappings, arborescent iterations, and the symmetries of integrability,Phys. Rev. Lett. 67:1373–1376 (1991).Google Scholar
  10. 10.
    M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Quasi integrability of the sixteen-vertex model,Phys. Lett. B 281:315–319 (1992).Google Scholar
  11. 11.
    M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Dynamical systems from quantum integrability, inYang-Baxter Equations in Paris, J.-M. Maillard, ed. (World Scientific, Singapore, 1993), pp. 95–124.Google Scholar
  12. 12.
    C. M. Viallet and G. Falqui, Singularity, complexity, and quasi-integrability of rational mappings,Commun. Math. Phys. 154:111–125 (1993).Google Scholar
  13. 13.
    A. P. Veselov, Growth and integrability in the dynamics of mappings,Commun. Math. Phys. 145:181–193 (1992).Google Scholar
  14. 14.
    C. M. Viallet, Baxterization, Dynamical systems and the symmetries of integrability, inProceedings of the Third Baltic Rim Student Seminar Helsinki 1993 (Springer, Berlin, 1994).Google Scholar
  15. 15.
    W. T. Tutte,Studies in Graph Theory (Mathematical Association of America, 175), Part II.Google Scholar
  16. 16.
    J. M. Maillard and R. Rammal, Some analytical consequences of the inverse relation for the Potts model.J. Phys. A 16:353 (1983).Google Scholar
  17. 17.
    R. J. Baxter, H. N. V. Temperley, and S. E. Ashley, Triangular Potts model at its transition temperature, and related models,Proc. R. Soc. Lond. A 358:535–559 (1978).Google Scholar
  18. 18.
    C. L. Schultz, Solvableq-state models in lattice statistics and quantum field theory,Phys. Rev. Lett. 46:629–632 (1981).Google Scholar
  19. 19.
    Y. G. Stroganov, A new calculation method for partition functions in some lattice models,Phys. Lett. A 74:116 (1979).Google Scholar
  20. 20.
    A. Gaaf and J. Hijmans, Symmetry relations in the sixteen-vertex model,Physica A 80:149–171 (1975).Google Scholar
  21. 21.
    M. T. Jaekel and J. M. Maillard, Largeq expansion on the anisotropic Potts model,J. Phys. A 16:175 (183).Google Scholar
  22. 22.
    R. Rammal and J. M. Maillard,q-State Potts model on the checkerboard lattice,J. Phys. A 16:1073–1081 (1983).Google Scholar
  23. 23.
    R. J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics,J. Stat. Phys. 28:1–41 (1982).Google Scholar
  24. 24.
    M. T. Jaekel and J. M. Maillard, Inversion relations and disorder solutions on Potts models,J. Phys. A 17:2079–2094 (1984).Google Scholar
  25. 25.
    M. T. Jaekel and J. M. Maillard, A criterion for disorder solutions of spin models,J. Phys. A 18:1229 (1985).Google Scholar
  26. 26.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1981).Google Scholar
  27. 27.
    J. M. Maillard, The inversion relation: Some simple examples (I) and (II),J. Phys. (Paris)46:329 (1984).Google Scholar
  28. 28.
    J. M. Maillard, Automorphism of algebraic varieties and Yang-Baxter equations,J. Math. Phys. 27:2776 (1986).Google Scholar
  29. 29.
    A. B. Zamolodchikov and A. B. Zamolodchikov,Ann. Phys. 120:253 (1979).Google Scholar
  30. 30.
    M. P. Bellon, Addition on curves and complexity of mappings, in preparation.Google Scholar
  31. 31.
    M. P. Bellon, S. Boukraa, J.-M. Maillard, and C.-M. Viallet, Towards three-dimensional Bethe Ansatz,Phys. Lett. B 314:79–88 (1993).Google Scholar
  32. 32.
    I. G. Korepanov, Vacuum curves, clssical integrable systems in discrete space-time and statistical physics,Commun. Math. Phys. (1994).Google Scholar
  33. 33.
    L. D. Faddeev, Integrable models in 1+1 dimensional quantum field theory, inLes Houches Lectures (1982) (Elsevier, Amsterdam, 1984).Google Scholar
  34. 34.
    M. T. Jaekel and J. M. Maillard, Algebraic invariants in soluble models,J. Phys. A 16:3105 (1983).Google Scholar
  35. 35.
    I. Krichever, Baxter's equations and algebraic geometry,Funct. Anal. Pril. 15.Google Scholar
  36. 36.
    M. P. Bellon, Addition on curves and complexity of quasi-integrable rational mappings, in preparation.Google Scholar
  37. 37.
    M. P. Bellon, J.-M. Maillard, G. Rollet, and C.-M. Viallet, Deformations of dynamics associated to the chiral Potts model,Int. J. Mod. Phys. B 6:3575–3584 (1992).Google Scholar
  38. 38.
    J. M. Maillard and G. Rollet, Hyperbolic Coxeter groups for triangular Potts models, preprint to be published inJ. Phys. A (1994).Google Scholar
  39. 39.
    L. P. Kadanoff and F. J. Wegner,Phys. Rev. B 4:3989–3993 (1971).Google Scholar
  40. 40.
    R. J. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model,Ann. Phys. 76:25–47 (1973).Google Scholar
  41. 41.
    S. Boukraa and J.-M. Maillard, Symmetries of lattice models in statistical mechanics and effective algebraic geometry,Phys. (Paris) I3:239–258 (1993).Google Scholar
  42. 42.
    A. W. Knapp,Elliptic Curves (Princeton University Press, Princeton, New Jersey, 1992).Google Scholar
  43. 43.
    R. Hartshorne,Algebraic Geometry (Springer-Verlag, Berlin, 1983), Appendix B, p. 438.Google Scholar
  44. 44.
    P. Griffiths and J. Harris,Principles of Algebraic Geometry (Wiley, New York, 1978).Google Scholar
  45. 45.
    I. R. Shafarevich,Basic Algebraic Geometry (Springer, Berlin, 1977), p. 216.Google Scholar
  46. 46.
    J.-M. Maillard, G. Rollet, F. Y. Wu, Inversion relations and symmetry groups for Potts models on the triangular lattice,J. Phys. A 27:3373–3379 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. Boukraa
    • 1
  • J. -M. Maillard
    • 1
  • G. Rollet
    • 1
  1. 1.Laboratoire de Physique Théorique et des Hautes Energies (Unité associée au CNRS, UA 280)Université de Paris 6-Paris 7Paris Cedex 05France

Personalised recommendations