Journal of Statistical Physics

, Volume 78, Issue 5–6, pp 1195–1251

# Discrete symmetry groups of vertex models in statistical mechanics

• S. Boukraa
• J. -M. Maillard
• G. Rollet
Articles

## Abstract

We analyze discrete symmetry groups of vertex models in lattice statistical mechanics represented as groups of birational transformations. They can be seen as generated by involutions corresponding respectively to two kinds of transformations onq×q matrices: the inversion of theq×q matrix and an (involutive) permutation of the entries of the matrix. We show that the analysis of the factorizations of the iterations of these transformations is a precious tool in the study of lattice models in statistical mechanics. This approach enables one to analyze two-dimensionalq4-state vertex models as simply as three-dimensional vertex models, or higher-dimensional vertex models. Various examples of birational symmetries of vertex models are analyzed. A particular emphasis is devoted to a three-dimensional vertex model, the 64-state cubic vertex model, which exhibits a polynomial growth of the complexity of the calculations. A subcase of this general model is seen to yield integrable recursion relations. We also concentrate on a specific two-dimensional vertex model to see how the generic exponential growth of the calculations reduces to a polynomial growth when the model becomes Yang-Baxter integrable. It is also underlined that a polynomial growth of the complexity of these iterations can occur even for transformations yielding algebraic surfaces, or higher-dimensional algebraic varieties.

### Key Words

Birational transformations vertex models inversion trick discrete dynamical systems nonlinear recursion relations iterations integrable mappings elliptic curves Abelian surfaces Jacobian of algebraic curves automorphisms of algebraic varieties complexity of iterations polynomial growth

## Preview

### References

1. 1.
S. Boukraa, J. M. Maillard, and G. Rollet, Determinantal identities on integrable mappings,Int. J. Mod. Phys. B 8:2157–2201 (1994).Google Scholar
2. 2.
S. Boukraa, J.-M. Maillard, and G. Rollet, Integrable mappings and polynomial growth,Physica A 208:115–175 (1994).Google Scholar
3. 3.
S. Boukraa, J.-M. Maillard, and G. Rollet, Almost integrable mappings,Int. J. Mod. Phys. B 8:137–174 (1994).Google Scholar
4. 4.
J. M. Maillard, Exactly solvable models in statistical mechanics and automorphisms of algebraic varieties,Progress in Statistical Mechanics, Vol. 3, C.-K. Hu, ed. (World Scientific, Singapore, 1988).Google Scholar
5. 5.
M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Integrable Coxeter groups,Phys. Lett. A 159:221–232 (1991).Google Scholar
6. 6.
M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Higher dimensional mappings,Phys. Lett. A 159:233–244 (1991).Google Scholar
7. 7.
M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Infinite discrete symmetry group for the Yang-Baxter equations: Spin models,Phys. Lett. A 157:343–353 (1991).Google Scholar
8. 8.
M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Infinite discrete symmetry group for the Yang-Baxter equations: Vertex models,Phys. Lett. B 260:87–100 (1991).Google Scholar
9. 9.
M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Rational mappings, arborescent iterations, and the symmetries of integrability,Phys. Rev. Lett. 67:1373–1376 (1991).Google Scholar
10. 10.
M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Quasi integrability of the sixteen-vertex model,Phys. Lett. B 281:315–319 (1992).Google Scholar
11. 11.
M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Dynamical systems from quantum integrability, inYang-Baxter Equations in Paris, J.-M. Maillard, ed. (World Scientific, Singapore, 1993), pp. 95–124.Google Scholar
12. 12.
C. M. Viallet and G. Falqui, Singularity, complexity, and quasi-integrability of rational mappings,Commun. Math. Phys. 154:111–125 (1993).Google Scholar
13. 13.
A. P. Veselov, Growth and integrability in the dynamics of mappings,Commun. Math. Phys. 145:181–193 (1992).Google Scholar
14. 14.
C. M. Viallet, Baxterization, Dynamical systems and the symmetries of integrability, inProceedings of the Third Baltic Rim Student Seminar Helsinki 1993 (Springer, Berlin, 1994).Google Scholar
15. 15.
W. T. Tutte,Studies in Graph Theory (Mathematical Association of America, 175), Part II.Google Scholar
16. 16.
J. M. Maillard and R. Rammal, Some analytical consequences of the inverse relation for the Potts model.J. Phys. A 16:353 (1983).Google Scholar
17. 17.
R. J. Baxter, H. N. V. Temperley, and S. E. Ashley, Triangular Potts model at its transition temperature, and related models,Proc. R. Soc. Lond. A 358:535–559 (1978).Google Scholar
18. 18.
C. L. Schultz, Solvableq-state models in lattice statistics and quantum field theory,Phys. Rev. Lett. 46:629–632 (1981).Google Scholar
19. 19.
Y. G. Stroganov, A new calculation method for partition functions in some lattice models,Phys. Lett. A 74:116 (1979).Google Scholar
20. 20.
A. Gaaf and J. Hijmans, Symmetry relations in the sixteen-vertex model,Physica A 80:149–171 (1975).Google Scholar
21. 21.
M. T. Jaekel and J. M. Maillard, Largeq expansion on the anisotropic Potts model,J. Phys. A 16:175 (183).Google Scholar
22. 22.
R. Rammal and J. M. Maillard,q-State Potts model on the checkerboard lattice,J. Phys. A 16:1073–1081 (1983).Google Scholar
23. 23.
R. J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics,J. Stat. Phys. 28:1–41 (1982).Google Scholar
24. 24.
M. T. Jaekel and J. M. Maillard, Inversion relations and disorder solutions on Potts models,J. Phys. A 17:2079–2094 (1984).Google Scholar
25. 25.
M. T. Jaekel and J. M. Maillard, A criterion for disorder solutions of spin models,J. Phys. A 18:1229 (1985).Google Scholar
26. 26.
R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1981).Google Scholar
27. 27.
J. M. Maillard, The inversion relation: Some simple examples (I) and (II),J. Phys. (Paris)46:329 (1984).Google Scholar
28. 28.
J. M. Maillard, Automorphism of algebraic varieties and Yang-Baxter equations,J. Math. Phys. 27:2776 (1986).Google Scholar
29. 29.
A. B. Zamolodchikov and A. B. Zamolodchikov,Ann. Phys. 120:253 (1979).Google Scholar
30. 30.
M. P. Bellon, Addition on curves and complexity of mappings, in preparation.Google Scholar
31. 31.
M. P. Bellon, S. Boukraa, J.-M. Maillard, and C.-M. Viallet, Towards three-dimensional Bethe Ansatz,Phys. Lett. B 314:79–88 (1993).Google Scholar
32. 32.
I. G. Korepanov, Vacuum curves, clssical integrable systems in discrete space-time and statistical physics,Commun. Math. Phys. (1994).Google Scholar
33. 33.
L. D. Faddeev, Integrable models in 1+1 dimensional quantum field theory, inLes Houches Lectures (1982) (Elsevier, Amsterdam, 1984).Google Scholar
34. 34.
M. T. Jaekel and J. M. Maillard, Algebraic invariants in soluble models,J. Phys. A 16:3105 (1983).Google Scholar
35. 35.
I. Krichever, Baxter's equations and algebraic geometry,Funct. Anal. Pril. 15.Google Scholar
36. 36.
M. P. Bellon, Addition on curves and complexity of quasi-integrable rational mappings, in preparation.Google Scholar
37. 37.
M. P. Bellon, J.-M. Maillard, G. Rollet, and C.-M. Viallet, Deformations of dynamics associated to the chiral Potts model,Int. J. Mod. Phys. B 6:3575–3584 (1992).Google Scholar
38. 38.
J. M. Maillard and G. Rollet, Hyperbolic Coxeter groups for triangular Potts models, preprint to be published inJ. Phys. A (1994).Google Scholar
39. 39.
L. P. Kadanoff and F. J. Wegner,Phys. Rev. B 4:3989–3993 (1971).Google Scholar
40. 40.
R. J. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model,Ann. Phys. 76:25–47 (1973).Google Scholar
41. 41.
S. Boukraa and J.-M. Maillard, Symmetries of lattice models in statistical mechanics and effective algebraic geometry,Phys. (Paris) I3:239–258 (1993).Google Scholar
42. 42.
A. W. Knapp,Elliptic Curves (Princeton University Press, Princeton, New Jersey, 1992).Google Scholar
43. 43.
R. Hartshorne,Algebraic Geometry (Springer-Verlag, Berlin, 1983), Appendix B, p. 438.Google Scholar
44. 44.
P. Griffiths and J. Harris,Principles of Algebraic Geometry (Wiley, New York, 1978).Google Scholar
45. 45.
I. R. Shafarevich,Basic Algebraic Geometry (Springer, Berlin, 1977), p. 216.Google Scholar
46. 46.
J.-M. Maillard, G. Rollet, F. Y. Wu, Inversion relations and symmetry groups for Potts models on the triangular lattice,J. Phys. A 27:3373–3379 (1994).Google Scholar