Journal of Statistical Physics

, Volume 81, Issue 1–2, pp 71–85 | Cite as

Heat transfer in lattice BGK modeled fluid

  • Y. Chen
  • H. Ohashi
  • M. Akiyama
Articles

Abstract

The thermal lattice BGK model is a recently suggested numerical tool aiming at solving problems of thermohydrodynamics. The quality of the lattice BGK simulation is checked in this paper by calculating temperature profiles in the Couette flow under different Eckert and Mach numbers. A revised lower order model is proposed to improve the accuracy and the higher order model is proved to be advantageous in this respect, especially in the flow regime with a higher Mach number.

Key Words

Lattice Boltzmann BGK approximation heat transfer computational fluid dynamics transonic flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Frisch, B. Hassalacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56(14):1505–1508 (1986).Google Scholar
  2. 2.
    G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata,Phys. Rev. Lett. 61(20):2332–2335 (1988).Google Scholar
  3. 3.
    S. Chen, H. Chen, D. Martinez, and W. Matthaeus, Lattice Boltzmann model for simulation of Magnetohydrodynamics.Phys. Rev. Lett. 67(27):3776–3779 (1991).Google Scholar
  4. 4.
    Y. H. Qian, D. d'Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes equation,Europhys. Lett. 17(6):479–484 (1992).Google Scholar
  5. 5.
    H. Chen, S. Chen and W. H. Matthaeus, Recovery of Navier-Stokes equations using a lattice-gas Boltzmann method.Phys. Rev. A 45(8):R5339–42 (1992).Google Scholar
  6. 6.
    P. Bhatnagar, E. P. Gross, and M. K. Krook, A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system.Phys. Rev. 94:511 (1954).Google Scholar
  7. 7.
    S. Chen, Z. Wang, X. Shan, and G. D. Doolen, Lattice Boltzmann computational fluid dynamics,J. Stat. Phys. 68:379 (1992).Google Scholar
  8. 8.
    D. Martinez, W. H. Matthaeus, and S. Chen, Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics,Phys. Fluids 6(3):1285–1298 (1993).Google Scholar
  9. 9.
    S. Hou, Z. Qisu, S. Chen, G. Doolen, and A. C. Cogley, Simulation of cavity flow by the lattice Boltzmann method, preprint.Google Scholar
  10. 10.
    F. J. Alexander, S. Chen, and J. D. Sterling, Lattice Boltzmann thermohydrodynamics,Phys. Rev. E 47:2249–2252 (1991).Google Scholar
  11. 11.
    Y. H. Qian and S. A. Orszag, Simulating thermohydrodynamics with lattice BGK models.J. Sci. Comp. 8(3):231–242 (1993).Google Scholar
  12. 12.
    Y. Chen, Lattice Bhatnagar-Gross-Krook method for fluid dynamics: Compressible, thermal and multi-phase models,Doctoral Thesis (1994).Google Scholar
  13. 13.
    Y. Chen, H. Ohashi, and M. Akiyama, Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macro-dynamic equations,Phys. Rev. E 50:2776–2783 (1994).Google Scholar
  14. 14.
    S. Wolfram, Cellular automaton fluids 1: Basic theory,J. Stat. Phys. 45:471–526 (1986).Google Scholar
  15. 15.
    G. McNamara and B. Alder, Analysis of the lattice Boltzmann treatment of hydrodynamics,Physica A 194:218–228 (1993).Google Scholar
  16. 16.
    R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications,Phys. Rep. 222(3):145–197 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Y. Chen
    • 1
  • H. Ohashi
    • 1
  • M. Akiyama
    • 1
  1. 1.Department of Quantum Engineering and Systems Science, Faculty of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations