Skip to main content
Log in

A improved incompressible lattice Boltzmann model for time-independent flows

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is well known that the lattice Boltzmann equation method (LBE) can model the incompressible Navier-Stokes (NS) equations in the limit where density goes to a constant. In a LBE simulation, however, the density cannot be constant because pressure is equal to density times the square of sound speed, hence a compressibility error seems inevitable for the LBE to model incompressible flows. This work uses a modified equilibrium distribution and a modified velocity to construct an LBE which models time-independent (steady) incompressible flows with significantly reduced compressibility error. Computational results in 2D cavity flow and in a 2D flow with an exact solution are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,Phys. Fluids 6(3):1285 (1994).

    Google Scholar 

  2. S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. C. Cogley,J. Comput. Phys. 118:329 (1995).

    Google Scholar 

  3. M. B. Reider and J. D. Sterling, Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations,Computers Fluids, to appear (1995).

  4. B. H. Elton, Comparisons of lattice Boltzmann methods and a finite-difference method for a two-dimensional viscous Burgers equation, submitted.

  5. Y. Qian, D. d'Humières, and P. Lallemand,Europhys. Lett. 17(6):479 (1992).

    Google Scholar 

  6. Y. Qian, Ph.D. thesis, Université Pierre et Marie Curie (January 1990).

  7. J. D. Sterling and S. Chen, Stability analysis of the lattice Boltzmann method,J. Comput. Phys., to appear (1995).

  8. P. A. Skordos,Phys. Rev. E 48:6 (1993).

    Google Scholar 

  9. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:649 (1987).

    Google Scholar 

  10. D. d'Humières and P. Lallemand,Complex Systems 1:599 (1987).

    Google Scholar 

  11. L. P. Kadanoff, G. R. McNamara, and G. Zanetti,Complex Systems 1:791 (1987).

    Google Scholar 

  12. F. J. Alexander, H. Chen, S. Chen and G. D. Doolen,Phys. Rev. A 46:1967 (1992).

    Google Scholar 

  13. U. Ghia, K. N. Ghia, and C. Y. Shin,J. Comput. Phys. 48:387 (1982).

    Google Scholar 

  14. Y. H. Qian and S. A. Orszag,Europhys. Lett. 21(3):255 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Q., Hou, S., Chen, S. et al. A improved incompressible lattice Boltzmann model for time-independent flows. J Stat Phys 81, 35–48 (1995). https://doi.org/10.1007/BF02179966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179966

Key Words

Navigation