, Volume 12, Issue 3, pp 134–137 | Cite as

Functional analysis of integral transport equations in linear rarefied gas dynamics

  • Claudio Pescatore
  • Giampiero Spiga


A study is proposed on the functional properties of the solutions of an interesting class of linear integral equations governing linear problems in rarefied gas dynamics. The analysis is carried out through a systematic study of the integral operator generated by the kernel of the equations themselves.


Mechanical Engineer Integral Equation Civil Engineer Functional Analysis Systematic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In questa nota vengono studiate le proprietà funzionali di alcune equazioni integrali lineari che regolano problemi basilari della dinamica dei gas rarefatti. Gli operatori integrali, relativi alle operazioni stesse, sono analizzati in dettaglio.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    CERCIGNANI C.,Theory and Applications of the Boltzmann Equation, Scottish Academic Press, Edinburgh, 1975Google Scholar
  2. [2]
    ABRAMOWITZ M., STEGUN I. A.,Handbook of Mathematical Functions, Dover Publ., New York, 1970.Google Scholar
  3. [3]
    BOFFI V. C., dE SOCIO L., GAFFURI G., PESCATORE C.,Rigorous Constructive Solutions to Monodimensional Poiseuille and Thermal Creep Flows, Meccanica, 11, 183, (1976).CrossRefGoogle Scholar
  4. [4]
    ZAANEN A. C.,Linear Analysis, North-Holland, Amsterdam, 1964.Google Scholar
  5. [5]
    BOFFI V. C., SPIGA G., J. Math. Phys., 14; n. 12; 1913, (1973).CrossRefGoogle Scholar
  6. [6]
    MIKHLIN S. G.,Linear Integral Equations, Hindustan, Delhi, 1960.Google Scholar
  7. [7]
    RIESZ F., NAGY B. Sz.,Functional Analysis, Frederick Ungar, New York, 1965.Google Scholar
  8. [8]
    WING G. M.,An Introduction to Transport Theory, J. Wiley and Sons, New York, 1962.Google Scholar
  9. [9]
    BOFFI V. C., PREMUDA F., SPIGA G., J. Math. Phys., 14, n. 3, 346, (1973).CrossRefGoogle Scholar
  10. [10]
    KRASNOSELSKII M. A.,Positive Solutions to Operator Equations, P. Noordhoff N. V., Groningen, 1964.Google Scholar
  11. [11]
    PREMUDA F., SPIGA G.,Positivity, Dominance and Uniform Continuity of Solution to the Neutron Integral Boltzmann Equation in Three-Dimensional Critical Systems, CNEN Report, RT/FI(74)31, Roma, 1974.Google Scholar
  12. [12]
    BIRKHOFF G., Rendic. di Matem., 22, 102, (1963).Google Scholar
  13. [13]
    PREMUDA F., TROMBETTI T., Quart. J. Mech. Appl. Math., 29, n. 1, 101, (1976).Google Scholar
  14. [14]
    KANTOROVICH L. V., AKILOV G. P.,Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964.Google Scholar
  15. [15]
    HILLE E., PHILLIPS R. S.,Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, Rhode Island, 1957.Google Scholar

Copyright information

© Tamburini Editore s.p.a. Milano 1977

Authors and Affiliations

  • Claudio Pescatore
    • 1
  • Giampiero Spiga
    • 1
  1. 1.Laboratorio di Ingegneria Nucleare dell'Università di BolognaItaly

Personalised recommendations