Journal of Statistical Physics

, Volume 80, Issue 5–6, pp 1309–1326 | Cite as

Low-temperature series for renormalized operators: The ferromagnetic square-lattice Ising model

  • J. Salas
Articles

Abstract

A method for computing low-temperature series for renormalized operators in the two-dimensional Ising model is proposed. These series are applied to the study of the properties of the truncated renormalized Hamiltonians when we start at very low temperature and zero field. The truncated Hamiltonians for majority rule, Kadanoff transformation, and decimation for 2×2 blocks depend on the how we approach the first-order phase-transition line. The renormalization group transformations are multivalued and discontinuous at this first-order transition line when restricted to some finite-dimensional interaction space.

Key Words

Renormalization group position-space renormalization-group transformations Ising model low-temperature expansions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Nienhuis and M. Nauenberg,Phys Rev. Lett. 35:477 (1975).Google Scholar
  2. 2.
    M. Asorey and J. G. Esteve,J. Stat. Phys. 65:483 (1991).Google Scholar
  3. 3.
    M. E. Fisher and A. N. Berker,Phys. Rev. B 26:2507 (1982).Google Scholar
  4. 4.
    W. Klein, D. J. Wallace, and R. K. P. Zia,Phys. Rev. Lett. 37:639 (1976).Google Scholar
  5. 5.
    H. J. Blöte and R. H. Swendsen,Phys. Rev. Lett. 43:799 (1979).Google Scholar
  6. 6.
    C. B. Lang,Nucl. Phys. B 280[FS18]:255 (1981).Google Scholar
  7. 7.
    A. González-Arroyo, M. Okawa, and Y. Shimizu,Phys. Rev. Lett. 60:487 (1988).Google Scholar
  8. 8.
    K. Decker, A. Hasenfratz, and P. Hasenfratz,Nucl. Phys. B 295[FS21]:21 (1988).Google Scholar
  9. 9.
    A. Hasenfratz and P. Hasenfratz,Nucl. Phys. B 295[FS21]:1 (1988).Google Scholar
  10. 10.
    A. González-Arroyo and J. Salas,Phys. Lett. B 261:415 (1991).Google Scholar
  11. 11.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal,J. Stat. Phys. 72:879 (1993).Google Scholar
  12. 12.
    R. B. Griffiths and P. A. Pearce,J. Stat. Phys. 20:499 (1979).Google Scholar
  13. 13.
    C. Domb inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, New York).Google Scholar
  14. 14.
    S. N. Isakov,Commun. Math. Phys. 95:427 (1984).Google Scholar
  15. 15.
    B. Kaufman and L. Onsager,Phys. Rev. 76:1244 (1949).Google Scholar
  16. 16.
    C. N. Yang,Phys. Rev. 85:808 (1952).Google Scholar
  17. 17.
    R. H. Swendsen,Phys. Rev. Lett. 52:1165 (1984).Google Scholar
  18. 18.
    A. González-Arroyo and M. Okawa,Phys. Rev. Lett. 58:2165 (1988).Google Scholar
  19. 19.
    A. González-Arroyo and J. Salas,Phys. Lett. B 214:418 (1988).Google Scholar
  20. 20.
    M. Creutz,Phys. Rev. B 43:10659 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • J. Salas
    • 1
  1. 1.Department of PhysicsNew York UniversityNew York

Personalised recommendations