Journal of Statistical Physics

, Volume 80, Issue 5–6, pp 931–970 | Cite as

Dynamical ensembles in stationary states

  • G. Gallavotti
  • E. G. D. Cohen


We propose, as a generalization of an idea of Ruelle's to describe turbulent fluid flow, a chaotic hypothesis for reversible dissipative many-particle systems in nonequilibrium stationary states in general. This implies an extension of the zeroth law of thermodynamics to nonequilibrium states and it leads to the identification of a unique distribution μ describing the asymptotic properties of the time evolution of the system for initial data randomly chosen with respect to a uniform distribution on phase space. For conservative systems in thermal equilibrium the chaotic hypothesis implies the ergodic hypothesis. We outline a procedure to obtain the distribution μ: it leads to a new unifying point of view for the phase space behavior of dissipative and conservative systems. The chaotic hypothesis is confirmed in a nontrivial, parameter-free, way by a recent computer experiment on the entropy production fluctuations in a shearing fluid far from equilibrium. Similar applications to other models are proposed, in particular to a model for the Kolmogorov-Obuchov theory for turbulent flow.

Key Words

Chaos Ruelle principle large deviations nonequilibrium SRB distribution stationary state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics,Phys. Rev. Lett. 74:2694–2697 (1995).Google Scholar
  2. 2.
    N. Simányi and D. Szász, The Boltzmann-Sinai ergodic hypothesis for hard ball systems, preprint, archived in, #95-133.Google Scholar
  3. 3.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Steady state electric conductivity in the periodic Lorentz gas,Commun. Math. Phys. 154:569–601 (1993).Google Scholar
  4. 4.
    Ya. G. Sinai,Lectures in Ergodic Theory, (Princeton University Pres, Princeton, New Jersey, 1977); see also Ya. G. Sinai, Markov partitions andC-diffeomorphisms,Funct. Anal. Appl. 2:64–89 (1968), n. 1; Ya. G. Sinai, Construction of Markov partitions,Funct. Anal. Appl. 2:70–80 (1968), n. 2.Google Scholar
  5. 5.
    R. Bowen,Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer-Verlag, Berlin, 1975).Google Scholar
  6. 6.
    D. Ruelle, Chaotic motions and strange attractors, inLezioni Lincee (notes by S. Isola, Accademia Nazionale dei Lincei) (Cambridge University Press, Cambridge, 1989); Measures describing a turbulent flow,Ann. N. Y. Acad. Sci. 357:1–9 (1980).Google Scholar
  7. 7.
    D. Ruelle, Ergodic theory of differentiable dynamical systems,Publ. Math. IHES 50:275–306 (1980).Google Scholar
  8. 8.
    E. Lorenz, Deterministic non periodic flow,J. Atmospheric Sci. 20:130–141 (1963).Google Scholar
  9. 9.
    G. E. Uhlenbeck, and G. W. Ford,Lectures in Statistical Mechanics, (American Mathematical Society, Providence, Rhode Island, 1963), pp. 5, 16, 30.Google Scholar
  10. 10.
    D. Ruelle, A measure associated with axiom A attractors,Am. J. Math. 98:619–654 (1976).Google Scholar
  11. 11.
    Y. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties,Ergodic Theory Dynam. Syst. 12:123–151 (1992).Google Scholar
  12. 12.
    D. J. Evans, E. G. D., Cohen, and G. P. Morriss, Viscosity of a simple fluid from its maximal Lyapunov exponents,Phys. Rev. 42A:5990–5997 (1990).Google Scholar
  13. 13.
    S. Sarman, D. J. Evans, and G. P. Morriss, Conjugate pairing rule and thermal transport coefficients,Phys. Rev. 45 A:2233–2242 (1992).Google Scholar
  14. 14.
    R. Livi, A. Politi, and S. Ruffo, Distribution of characteristic exponents in the thermodynamic limit,J. Phys. 19A:2033–2040 (1986).Google Scholar
  15. 15.
    J. P. Eckmann and D. Ruelle, Ergodic theory of strange attractors,Rev. Mod. Phys. 57:617–656 (1985).Google Scholar
  16. 16.
    Ya. G. Sinai, A remark concerning the thermodynamical limit of Lyapunov spectrum, Princeton University preprint (March 1995).Google Scholar
  17. 17.
    Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards,Russ. Math. Surv. 25:137–189 (1970).Google Scholar
  18. 18.
    V. Arnold and A. Avez,Ergodic Problems of Classical Mechanics (Benjamin, New York, 1966).Google Scholar
  19. 19.
    A. Baranyai, D. J. Evans, and E. G. D. Cohen, Field dependent conductivity and diffusion in a two dimensional Lorentz gas,J. Stat. Phys. 70:1085–1098 (1993).Google Scholar
  20. 20.
    B. L. Holian, W. G. Hoover, and H. A. Posch, Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics,Phys. Rev. Lett. 59:10–13 (1987).Google Scholar
  21. 21.
    H. A. Posch and W. G. Hoover, Non equilibrium molecular dynamics of a classical fluid, inMolecular Liquids: New Perspectives in Physics and Chemistry, J. Teixeira-Dias, ed. (Kluwer, 1992), pp. 527–547.Google Scholar
  22. 22.
    D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in shearing steady flows,Phys. Rev. Lett. 71:2401–2404 (1993).Google Scholar
  23. 23.
    U. Dressler, Symmetry property of the Lyapunov exponents of a class of dissipative dynamical systems with viscous damping,Phys. Rev. 38A:2103–2109 (1988).Google Scholar
  24. 24.
    N. I. Chernov and J. L. Lebowitz, Stationary shear flow in boundary driven Hamiltonian systems, Rutgers University preprint, May 1994.Google Scholar
  25. 25.
    C. Marchioro, An example of absence of turbulence for any Reynolds number,Commun. Math. Phys. 105:99–105 (1986).Google Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, Oxford, 1959).Google Scholar
  27. 27.
    She Zhen-Su and E. Jackson, Constrained Euler system for Navier-Stokes turbulence,Phys. Rev. Lett. 70:1255–1258 (1993).Google Scholar
  28. 28.
    G. Gallavotti, Coarse graining and chaos, in preparation.Google Scholar
  29. 29.
    G. Gallavotti, inTopics in Chaotic Dynamics (Lectures at the Granada School), Garrido-Marro, ed. (Springer-Verlag, Berlin, 1995).Google Scholar
  30. 30.
    G. Gallavotti, Reversible Anosov diffeomorphisms and large deviations, in mp_arc@, #95-19.Google Scholar
  31. 31.
    D. J. Evans and D. J. Searles, Equilibrium microstates which generate second law violating steady states, Research School of Chemistry, Canberra, ACT, 0200, preprint (1993).Google Scholar
  32. 32.
    L. Bunimovich, Ya. G. Sinai, and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards,Russ. Math. Surv. 45(3):105–152 (1990); Statistical properties of two dimensional hyperbolic billiards,Russ. Math. Surv. 46(4):47–106 (1991).Google Scholar
  33. 33.
    G. Gallavotti, Ergodicity, ensembles, irreversibility in Boltzmann and beyond,J. Stat. Phys. 78:1571–1589 (1995).Google Scholar
  34. 34.
    E. G. D. Cohen, Boltzmann and statistical mechanics, Lecture at the International Conference on Boltzmann and His Legacy 150 Years After His Birth, Academia Nazionale dei Lincei, Rome May 21–28, 1994, in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • G. Gallavotti
    • 1
  • E. G. D. Cohen
    • 2
  1. 1.FisicaUniversità di Roma La SapienzaRomeItaly
  2. 2.Rockefeller UniversityNew York

Personalised recommendations