Journal of Statistical Physics

, Volume 82, Issue 3–4, pp 1199–1206 | Cite as

Histogram Monte Carlo position-space renormalization group: Applications to the site percolation

  • Chin-Kun Hu
  • Chi-Ning Chen
  • F. Y. Wu
Short Communication

Abstract

We study site percolation on the square lattice and show that, when augmented with histogram Monte Carlo simulations for large lattices, the cell-to-cell renormalization group approach can be used to determine the critical probability accurately. Unlike the cell-to-site method and an alternate renormalization group approach proposed recently by Sahimi and Rassamdana, both of which rely onab initio numerical inputs, the cell-to-cell scheme is free of prior knowledge and thus can be applied more widely.

Key Words

Percolation renormalization group Monte Carlo critical point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kesten,Percolation Theory for Mathematicians (Birkhauser, Boston, 1982).Google Scholar
  2. 2.
    D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed. (Taylor and Francis, London, 1992).Google Scholar
  3. 3.
    M. F. Syskes, D. S. Gaunt, and M. Glen,J. Phys. A: Math. Gen. 9:L97 (1976).Google Scholar
  4. 4.
    T. Gebele,J. Phys. A: Math. Gen 17:L51 (1984).Google Scholar
  5. 5.
    F. Yonezawa, S. Sakammoto, and M. Hori,Phys. Rev. B40:636 (1989).Google Scholar
  6. 6.
    R. M. Ziff,Phys. Rev. Lett. 69:2670 (1992).Google Scholar
  7. 7.
    R. P. Langlands, C. Pichet, Ph. Pouliot, and Y. Saint-Aubin,J. Stat. Phys. 67:553 (1992).Google Scholar
  8. 8.
    P. J. Reynolds, H. E. Stanley, and W. Klein,J. Phys. A: Math. Gen. 11:L199 (1978).Google Scholar
  9. 9.
    P. J. Reynolds, H. E. Stanley, and W. Klein,Phys. Rev. 21:1223 (1980).Google Scholar
  10. 10.
    H. Gould and J. Tobochnik,An Introduction to Computer Simulation Methods (Addison-Wesley, New York, 1988), Vol. 2, p. 440.Google Scholar
  11. 11.
    C.-K. Hu,Phys. Rev. B 46:6592 (1992).Google Scholar
  12. 12.
    C.-K. Hu,Phys. Rev. Lett. 69:2739 (1992).Google Scholar
  13. 13.
    C.-K. Hu,J. Phys. A: Math. Gen. 27:L813 (1994).Google Scholar
  14. 14.
    C.-K. Hu,Chim. J. Phys. (Taipei)32:519 (1994).Google Scholar
  15. 15.
    C.-K. Hu,Phys. Rev. B 51:3922 (1995).Google Scholar
  16. 16.
    J. L. Cardy,J. Phys. A: Math. Gen. 25:L201 (1992).Google Scholar
  17. 17.
    M. Sahimi and H. Rassamdana,J. Stat. Phys. 78:1157–1164 (1995).Google Scholar
  18. 18.
    A. Aharony and J. P. Hovi,Phys. Rev. Lett. 72:1941 (1994).Google Scholar
  19. 19.
    R. M. Ziff,Phys. Rev. Lett. 72:1942 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Chin-Kun Hu
    • 1
  • Chi-Ning Chen
    • 1
  • F. Y. Wu
    • 2
  1. 1.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  2. 2.Department of PhysicsNortheastern UniversityBoston

Personalised recommendations