Skip to main content

Effective potential and weak noise transitions

Abstract

We review the notion of effective potential for stochastic processes and discuss its possible applications. We calculate this function up to first order in a parameter measuring the intensity of the noise for a general nonlinear system. The result is applied exhibiting a transition induced by weak noise.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Calisto, E. Cerda, and E. Tirapegui, InInstabilities and Nonequilibrium Structures IV, E. Tirapegui and W. Zeller, eds. (Kluwer, Dordrecht, 1993).

    Google Scholar 

  2. 2.

    R. Graham, InNoise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  3. 3.

    R. Graham and T. Tél,Phys. Rev. Lett. 52:9 (1984);J. Stat. Phys. 35:729 (1984);Phys. Rev. A 31:1109 (1984).

    Google Scholar 

  4. 4.

    H. R. Jauslin,J. Stat. Phys. 42:573 (1986).

    Google Scholar 

  5. 5.

    O. Descalzi and R. Graham,Phys. Lett. A 170:84 (1992).

    Google Scholar 

  6. 6.

    O. Descalzi and R. Graham,Z. Phys. B 93:509 (1994).

    Google Scholar 

  7. 7.

    R. Graham, InStochastic Processes in Nonequilibrium Systems, L. Garrido, P. Seglar, and P. Shephard, eds. (Springer, New York, 1978).

    Google Scholar 

  8. 8.

    L. Bonilla, InFar from Equilibrium Phase Transitions, L. Garrido, ed. (Springer, Berlin, 1988).

    Google Scholar 

  9. 9.

    N. G. van Kampen, InInstabilities and Nonequilibrium Structure I, E. Tirapegui and D. Villarroel, eds. (Kluwer, Dordrecht, 1987).

    Google Scholar 

  10. 10.

    H. Calisto and E. Tirapegui,J. Stat. Phys. 71:683 (1993).

    Google Scholar 

  11. 11.

    H. Calisto, E. Cerda, and E. Tirapegui,J. Stat. Phys. 71:513 (1993).

    Google Scholar 

  12. 12.

    H. Calisto, E. Cerda, and E. Tirapegui,J. Stat. Phys. 69:1115 (1992).

    Google Scholar 

  13. 13.

    W. Horsthemke and R. Lefever,Noise Induced Transitions (Springer, Berlin, 1984).

    Google Scholar 

  14. 14.

    F. Langouche, D. Roekaerts, and E. Tirapegui,Functional Integration and Semiclassical Expansion (Reidel, Dordrecht, 1982).

    Google Scholar 

  15. 15.

    S. Coleman and E. Weinberg,Phys. Rev. D 7:1888 (1973).

    Google Scholar 

  16. 16.

    E. S. Abers and B. W. Lee,Phys. Rep. 9:1 (1973).

    Google Scholar 

  17. 17.

    F. Langouche, D. Roekaerts, and E. Tirapegui,Phys. Rev. D 20:419 (1979).

    Google Scholar 

  18. 18.

    F. Languiche, D. Roekaerts, and E. Tirapegui,Nuovo Cimento 64A:357 (1981).

    Google Scholar 

  19. 19.

    M. E. Brachet and E. Tirapegui,Phys. Lett. A 81:211 (1981).

    Google Scholar 

  20. 20.

    F. Langouche, D. Roekaerts, and E. Tirapegui,Phys. Lett. A 82:309 (1981).

    Google Scholar 

  21. 21.

    C. Van den Broeck and E. Tirapegui,J. Stat. Phys. 50:439 (1988).

    Google Scholar 

  22. 22.

    R. Toral and A. Chakrabarti,Phys. Rev. B 42:2445 (1990).

    Google Scholar 

  23. 23.

    J. García-Ojalvo, J. M. Sancho, and L. Ramírez-Piscina,Phys. Lett. A 168:35 (1992).

    Google Scholar 

  24. 24.

    C. Van den Broeck and J. M. R. Parrondo, Mean field model for spatially extended systems in the presence of multiplicative noise, inInstabilities and Nonequilibrium Structures V, E. Tirapegui and W. Zeller, eds. (Kluwer, Dordrecht, 1995).

    Google Scholar 

  25. 25.

    J. M. Sancho and M. San Miguel InNoise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  26. 26.

    F. Langouche, D. Roekaerts, and E. Tirapegui,Phys. Rev. D 23:1290 (1980).

    Google Scholar 

  27. 27.

    M. San Miguel and J. M. Sancho,Z. Phys. B 43:361 (1981).

    Google Scholar 

  28. 28.

    P. Hänggi,Z. Phys. B 31:407 (1978).

    Google Scholar 

  29. 29.

    R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, Berlin, 1985).

    Google Scholar 

  30. 30.

    Y. Fujimoto, L. O'Raifeartaigh, and G. Parravicini,Nucl. Phys. B 212:268 (1983).

    Google Scholar 

  31. 31.

    O. Descalzi, J. Lauzeral, and E. Tirapegui, Stationary probability for weak noise transitions, Preprint, Universidad de Chile (1995).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calisto, H., Cerda, E. & Tirapegui, E. Effective potential and weak noise transitions. J Stat Phys 82, 1015–1045 (1996). https://doi.org/10.1007/BF02179800

Download citation

Key Words

  • Effective potential
  • noise-induced transitions
  • weak noise transitions
  • stochastic processes