Advertisement

Journal of Statistical Physics

, Volume 82, Issue 3–4, pp 1015–1045 | Cite as

Effective potential and weak noise transitions

  • H. Calisto
  • E. Cerda
  • E. Tirapegui
Articles

Abstract

We review the notion of effective potential for stochastic processes and discuss its possible applications. We calculate this function up to first order in a parameter measuring the intensity of the noise for a general nonlinear system. The result is applied exhibiting a transition induced by weak noise.

Key Words

Effective potential noise-induced transitions weak noise transitions stochastic processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Calisto, E. Cerda, and E. Tirapegui, InInstabilities and Nonequilibrium Structures IV, E. Tirapegui and W. Zeller, eds. (Kluwer, Dordrecht, 1993).Google Scholar
  2. 2.
    R. Graham, InNoise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989).Google Scholar
  3. 3.
    R. Graham and T. Tél,Phys. Rev. Lett. 52:9 (1984);J. Stat. Phys. 35:729 (1984);Phys. Rev. A 31:1109 (1984).Google Scholar
  4. 4.
    H. R. Jauslin,J. Stat. Phys. 42:573 (1986).Google Scholar
  5. 5.
    O. Descalzi and R. Graham,Phys. Lett. A 170:84 (1992).Google Scholar
  6. 6.
    O. Descalzi and R. Graham,Z. Phys. B 93:509 (1994).Google Scholar
  7. 7.
    R. Graham, InStochastic Processes in Nonequilibrium Systems, L. Garrido, P. Seglar, and P. Shephard, eds. (Springer, New York, 1978).Google Scholar
  8. 8.
    L. Bonilla, InFar from Equilibrium Phase Transitions, L. Garrido, ed. (Springer, Berlin, 1988).Google Scholar
  9. 9.
    N. G. van Kampen, InInstabilities and Nonequilibrium Structure I, E. Tirapegui and D. Villarroel, eds. (Kluwer, Dordrecht, 1987).Google Scholar
  10. 10.
    H. Calisto and E. Tirapegui,J. Stat. Phys. 71:683 (1993).Google Scholar
  11. 11.
    H. Calisto, E. Cerda, and E. Tirapegui,J. Stat. Phys. 71:513 (1993).Google Scholar
  12. 12.
    H. Calisto, E. Cerda, and E. Tirapegui,J. Stat. Phys. 69:1115 (1992).Google Scholar
  13. 13.
    W. Horsthemke and R. Lefever,Noise Induced Transitions (Springer, Berlin, 1984).Google Scholar
  14. 14.
    F. Langouche, D. Roekaerts, and E. Tirapegui,Functional Integration and Semiclassical Expansion (Reidel, Dordrecht, 1982).Google Scholar
  15. 15.
    S. Coleman and E. Weinberg,Phys. Rev. D 7:1888 (1973).Google Scholar
  16. 16.
    E. S. Abers and B. W. Lee,Phys. Rep. 9:1 (1973).Google Scholar
  17. 17.
    F. Langouche, D. Roekaerts, and E. Tirapegui,Phys. Rev. D 20:419 (1979).Google Scholar
  18. 18.
    F. Languiche, D. Roekaerts, and E. Tirapegui,Nuovo Cimento 64A:357 (1981).Google Scholar
  19. 19.
    M. E. Brachet and E. Tirapegui,Phys. Lett. A 81:211 (1981).Google Scholar
  20. 20.
    F. Langouche, D. Roekaerts, and E. Tirapegui,Phys. Lett. A 82:309 (1981).Google Scholar
  21. 21.
    C. Van den Broeck and E. Tirapegui,J. Stat. Phys. 50:439 (1988).Google Scholar
  22. 22.
    R. Toral and A. Chakrabarti,Phys. Rev. B 42:2445 (1990).Google Scholar
  23. 23.
    J. García-Ojalvo, J. M. Sancho, and L. Ramírez-Piscina,Phys. Lett. A 168:35 (1992).Google Scholar
  24. 24.
    C. Van den Broeck and J. M. R. Parrondo, Mean field model for spatially extended systems in the presence of multiplicative noise, inInstabilities and Nonequilibrium Structures V, E. Tirapegui and W. Zeller, eds. (Kluwer, Dordrecht, 1995).Google Scholar
  25. 25.
    J. M. Sancho and M. San Miguel InNoise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989).Google Scholar
  26. 26.
    F. Langouche, D. Roekaerts, and E. Tirapegui,Phys. Rev. D 23:1290 (1980).Google Scholar
  27. 27.
    M. San Miguel and J. M. Sancho,Z. Phys. B 43:361 (1981).Google Scholar
  28. 28.
    P. Hänggi,Z. Phys. B 31:407 (1978).Google Scholar
  29. 29.
    R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, Berlin, 1985).Google Scholar
  30. 30.
    Y. Fujimoto, L. O'Raifeartaigh, and G. Parravicini,Nucl. Phys. B 212:268 (1983).Google Scholar
  31. 31.
    O. Descalzi, J. Lauzeral, and E. Tirapegui, Stationary probability for weak noise transitions, Preprint, Universidad de Chile (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • H. Calisto
    • 1
    • 2
  • E. Cerda
    • 1
  • E. Tirapegui
    • 1
  1. 1.Departamento de Física, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Centro de Física No Lineal y Sistemas ComplejosSantiagoChile

Personalised recommendations