Journal of Statistical Physics

, Volume 82, Issue 3–4, pp 931–950 | Cite as

Existence and stability of steady fronts in bistable coupled map lattices

  • Bastien Fernandez


We prove the existence and we study the stability of the kinklike fixed points in a simple coupled map lattice (CML) for which the local dynamics has two stable fixed points. The condition for the existence allows us to define a critical value of the coupling parameter where a (multi) generalized saddle-node bifurcation occurs and destroys these solutions. An extension of the results to other CMLs in the same class is also displayed. Finally, we emphasize the property of spatial chaos for small coupling.

Key Words

Coupled map lattices front saddle-node bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Keeler and J. D. Farmer, Robust space-time intermittency and 1/f noise,Physica D 23:413–435 (1986).Google Scholar
  2. 2.
    A. Lambert and R. Lima, Stability of wavelengths and spacio-temporal intermittency,Physica D 71:390–411 (1994).Google Scholar
  3. 3.
    M. C. Cross and P. C. Hohenberg, Pattern formation outside equilibrium,Rev. Mod. Phys. 65:851–1113 (1993).Google Scholar
  4. 4.
    P. Collet and J. P. Eckmann,Instabilities and Fronts in Extended Systems (Princeton University Press, Princeton, New Jersey, 1990).Google Scholar
  5. 5.
    W. V. Saarloos, Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection,Phys. Rev. A 37:211–229 (1988).Google Scholar
  6. 6.
    B. Denardo, B. Galvin, A. Greenfield, A. Larraza, S. Putterman, and W. Wright, Observation of localized structures in nonlinear lattices: Domains walls and kinks,Phys. Rev. Lett. 68:1730–1733 (1992).Google Scholar
  7. 7.
    Y. S. Kivshar, Class of localized structures in nonlinear lattices,Phys. Rev. B 46:8652–8654 (1992).Google Scholar
  8. 8.
    J. P. Crutchfield and K. Kaneko, Phenomenology of spatio-temporal chaos,Direction in Chaos Hao Bai-Lin, ed. (World Scientific, Singapore, 1987), pp 272–353.Google Scholar
  9. 9.
    K. Kaneko, The coupled map lattices, inTheory and Applications of Coupled Map Lattices K. Kaneko, ed. (Wiley, New York, 1993).Google Scholar
  10. 10.
    B. Fernandez, Kink dynamics in one-dimensional coupled map lattice,Chaos 4(3):602–608 (1995).Google Scholar
  11. 11.
    S. Aubry, D. Escande, J. P. Gaspard, P. Manneville, and J. Villain,Structures et Instabilités (Les éditions de physique, Orsay, 1986).Google Scholar
  12. 12.
    V. S. Afraimovich and L. A. Bunimovich, Simplest structures in coupled map lattices and their stability,Random Computational Dynamics 1:423–444 (1993).Google Scholar
  13. 13.
    V. S. Afraimovich, L. Y. Glebsky, and V. I. Nekorkin, Stability of stationary states and topological spatial chaos in multidimensional lattice dynamical systems,Random Computational Dynamics 2:287–303 (1994).Google Scholar
  14. 14.
    R. S. Mackay and J.-A. Sepulchre, Multistability in networks of weakly coupled bistable units,Physica D 82:243–254 (1995).Google Scholar
  15. 15.
    V. S. Afraimovich and L. A. Bunimovich, Density of defects and spatial entropy in extended systems,Physica D 80:277–288 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Bastien Fernandez
    • 1
  1. 1.Centre de Physique Théorique (Unité Propre de Recherche 7061)CNRSMarseille Cedex 9France

Personalised recommendations