Journal of Statistical Physics

, Volume 84, Issue 3–4, pp 535–653 | Cite as

Stability of ferromagnetism in Hubbard models with nearly flat bands

  • Hal Tasaki


Whether spin-independent Coulomb interaction in an electron system can be the origin of ferromagnetism has been an open problem for a long time. Recently, a “constructive” approach to this problem has been developed, and the existence of ferromagnetism in the ground states of certain Hubbard models was established rigorously. A special feature of these Hubbard models is that their lowest bands (in the corresponding single-electron problems) are completely flat. Here we study models obtained by adding small but arbitrary translation-invariant perturbation to the hopping Hamiltonian of these flat-band models. The resulting models have nearly flat lowest bands. We prove that the ferromagnetic state is stable against a single-spin flip provided that Coulomb interactionU is sufficiently large. (It is easily found that the same state is unstable against a single-spin flip ifU is small enough.) We also prove upper and lower bounds for the dispersion relation of the lowest energy eigenstate with a single flipped spin, which bounds establish that the model has “healthy” spin-wave excitation. It is notable that the (local) stability of ferromagnetism is proved in nonsingular Hubbard models, in which we must overcome competition between the kinetic energy and the Coulomb interaction. We also note that this is one of the very few rigorous and robust results which deal with truly non-perturbative phenomena in many-electron systems. The local stability strongly suggests that the Hubbard models with nearly flat bands have ferromagnetic ground states. We believe that the present models can be studied as paradigm models for (insulating) ferromagnetism in itinerant electron systems.

Key Words

Hubbard models ferromagnetism local stability spin-wave excitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson, inMagnetism I, G. T. Rado and H. Schul, eds. (Academic Press, New York, 1963).Google Scholar
  2. 2.
    P. W. Anderson,Phys. Rev. Lett. 21:13 (1968).Google Scholar
  3. 3.
    N. W. Ashcroft and N. D. Mermin,Solid State Physics (Saunders College, 1976).Google Scholar
  4. 4.
    G. Benffatto, G. Gallavotti, A. Procacci, and B. Scoppola,Commun. Math. Phys. 160: 93 (1994).Google Scholar
  5. 5.
    F. Bloch,Z. Phys. 57:545 (1929).Google Scholar
  6. 6.
    U. Brandt and A. Giesekus,Phys. Rev. Lett. 68:2648 (1992).Google Scholar
  7. 7.
    J. de Boer and A. Schadschneider,Phys. Rev. Lett. 75:4298 (1995).Google Scholar
  8. 8.
    B. Douçot and X. G. Wen,Phys. Rev. B 40:2719 (1989).Google Scholar
  9. 9.
    F. Dyson, E. H. Lieb, and B. Simon,J. Stat. Phys. 18:335 (1978).Google Scholar
  10. 10.
    J. Feldman, J. Magnen, V. Rivasseau, and E. Trubowitz, inThe LXII les Houches Summer School “Fluctuating Geometries in Statistical Mechanics and in Field Theory,” August 2–September 9 1994 [cond-mat/9503047].Google Scholar
  11. 11.
    D. Ghosh,Phys. Rev. Lett. 27:1584 (1971).Google Scholar
  12. 12.
    M. C. Gutzwiller,Phys. Rev. Lett. 10:159 (1963).Google Scholar
  13. 13.
    T. Hanisch and E. Müller-Hartmann,Ann. Physik,2:381 (1993).Google Scholar
  14. 14.
    W. J. Heisenberg,Z. Phys. 49:619 (1928).Google Scholar
  15. 15.
    C. Herring, inMagnetism IIB, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966).Google Scholar
  16. 16.
    C. Herring, inMagnetism IV, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966).Google Scholar
  17. 17.
    J. Hubbard,Proc. Roy. Soc. Lond A 276:238 (1963).Google Scholar
  18. 18.
    J. Kanamori,Prog. Theor. Phys. 30:275 (1963).Google Scholar
  19. 19.
    T. Kato,A Short Introduction to Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1982).Google Scholar
  20. 20.
    W. Kohn,Phys. Rev. B 7:4388 (1973).Google Scholar
  21. 21.
    T. Koma and H. Tasaki,Phys. Rev. Lett. 68:3248 (1992).Google Scholar
  22. 22.
    K. Kusakabe, Ferromagnetism in strongly correlated electron systems, Ph.D. thesis, University of Tokyo (1993).Google Scholar
  23. 23.
    K. Kusakabe and H. Aoki,Phys. Rev. Lett. 72:144 (1994).Google Scholar
  24. 24.
    K. Kusakabe and H. Aoki,Physica B 194–196:215 (1994).Google Scholar
  25. 25.
    S. Liang and H. Pang, Preprint (1994) [cond-mat/9404003].Google Scholar
  26. 26.
    E. H. Lieb, inPhase Transitions (Wiley, Interscience,. 1971), p. 45.Google Scholar
  27. 27.
    E. H. Lieb,Phys. Rev. Lett. 62:1201 (1989).Google Scholar
  28. 28.
    E. H. Lieb and D. Mattis,Phys. Rev. 125:164 (1962).Google Scholar
  29. 29.
    D. C. Mattis,The Theory of Magnestism I (Springer-Verlag, Berlin, 1981).Google Scholar
  30. 30.
    A. Mielke,J. Phys. A 24:L73 (1991).Google Scholar
  31. 31.
    A. Mielke,J. Phys. A 24:3311 (1991).Google Scholar
  32. 32.
    A. Mielke,J. Phys. A 25:4335 (1992).Google Scholar
  33. 33.
    A. Mielke,Phys. Lett. A 174:443 (1993).Google Scholar
  34. 34.
    A. Mielke and H. Tasaki,Commun. Math. Phys. 158:341 (1993).Google Scholar
  35. 35.
    E. Müller-Hartmann,J. Low Temp. Phys. 99:349 (1995).Google Scholar
  36. 36.
    Y. Nagaoka,Phys. Rev. 147:392 (1966).Google Scholar
  37. 37.
    W. O. Putikka, M. U. Luchini, and M. Ogata,Phys. Rev. Lett. 69:2288 (1992).Google Scholar
  38. 38.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV (Academic Press, New York, 1978).Google Scholar
  39. 39.
    B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson,Phys. Rev. B 41:2375 (1990).Google Scholar
  40. 40.
    S. Q. Shen, Z. M. Qiu, and G. S. Tian,Phys. Rev. Lett. 72:1280 (1994).Google Scholar
  41. 41.
    J. C. Slater, H. Statz and G. F. Koster,Phys. Rev. 91:1323 (1953).Google Scholar
  42. 42.
    R. Strack and D. Vollhardt,Phys. Rev. Lett. 72:3425 (1994).Google Scholar
  43. 43.
    R. Strack and D. Vollhardt,J. Low Temp. Phys. 99:385 (1995).Google Scholar
  44. 44.
    A. Sütő,Phys. Rev. B 43:8779 (1991).Google Scholar
  45. 45.
    A. Sütő,Commun. Math. Phys. 140:43 (1991).Google Scholar
  46. 46.
    H. Tasaki,Phys. Rev. B. 40:9192 (1989).Google Scholar
  47. 47.
    H. Tasaki,Phys. Rev. Lett. 69:1608 (1992).Google Scholar
  48. 48.
    H. Tasaki,Phys. Rev. Lett. 70:3303 (1993).Google Scholar
  49. 49.
    H. Tasaki,Phys. Rev. Lett. 73:1158 (1994).Google Scholar
  50. 50.
    H. Tasaki,Phys. Rev. B 49:7763 (1994).Google Scholar
  51. 51.
    H. Tasaki,Phys. Rev. Lett. 75:4678 (1995).Google Scholar
  52. 52.
    H. Tasaki, in preparation.Google Scholar
  53. 53.
    D. J. Thouless,Proc. Phys. Soc. Lond. 86:893 (1965).Google Scholar
  54. 54.
    B. Tóth,Lett. Math. Phys. 22:321 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Hal Tasaki
    • 1
  1. 1.Department of PhysicsGakushuin UniversityTokyoJapan

Personalised recommendations