Advertisement

Journal of Statistical Physics

, Volume 84, Issue 3–4, pp 379–397 | Cite as

A remark on the low-temperature behavior of the SOS interface in half-space

  • J. L. Lebowitz
  • A. E. Mazel
Articles

Abstract

We investigate the low-temperature phase diagram of thed-dimensional (d≥2) solid-on-solid (SOS) interface constrained to lie above a rigid wall to which it is attracted by a constant force. We prove uniqueness of the Gibbs state and exponentially fast convergence (in the diameter of the domain) of the finite-volume expectation of local observables, for all values of parameters where uniqueness in the class of translation-periodic limit Gibbs states was established previously. These domains of uniqueness are bordered by lines on which the system undergoes a layering transition.

Key Words

Gibbs state SOS model layering transition uniqueness FKG cluster expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bricmont, A. El. Mellouki, and J. Fröhlich, Random surfaces in statistical mechanics: Roughening, rounding, wetting, ...,J. Stat. Phys. 42:743–798 (1986).Google Scholar
  2. 2.
    J. Bricmont, J. R. Fontaine, and J. L. Lebowitz, Surface tension, percolation and roughening,J. Stat. Phys. 29:193–203 (1982).Google Scholar
  3. 3.
    F. Cesi and F. Martinelli, On the layering transition of an SOS surface interacting with a wall. I. Equilibrium results,J. Stat. Phys. (1995).Google Scholar
  4. 4.
    E. I. Dinaburg and A. E. Mazel, Layering transition in SOS model with external magnetic field,J. Stat. Phys. 74:533–563 (1994).Google Scholar
  5. 5.
    G. Forgacs, R. Lipowsky, and T. M. Nieuwenhuizen, The behavior of interfaces in ordered and disordered systems, inPhase Transitions and Critical Phenomena, Vol. 14, C. Comb and J. L. Lebowitz, eds. (Academic Press, New York, 1991), pp. 136–363.Google Scholar
  6. 6.
    C. Fortuin, P. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).Google Scholar
  7. 7.
    J. Fröhlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas,Commun. Math. Phys. 81:527–602 (1981).Google Scholar
  8. 8.
    R. Holley, Remarks on the FKG inequalities,Commun. Math. Phys. 23:87–99 (1971).Google Scholar
  9. 9.
    J. L. Lebowitz and A. Martin-Löf, On the uniqueness of the equilibrium state for Ising spin systems,Commun. Math. Phys. 25:276–282 (1971).Google Scholar
  10. 10.
    J. L. Lebowitz and E. Presutti, Statistical mechanics of systems of unbounded spins,Commun. Math. Phys. 50:195–218 (1976).Google Scholar
  11. 11.
    M. Zahradnik, An alternate version of Pirogov-Sinai theory,Commun. Math. Phys. 93:559–581 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • J. L. Lebowitz
    • 1
  • A. E. Mazel
    • 1
    • 2
  1. 1.Department of Mathematics and PhysicsRutgers UniversityNew Brunswick
  2. 2.International Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations