Journal of Statistical Physics

, Volume 84, Issue 1–2, pp 309–320 | Cite as

On a “structure intermediate between quasiperiodic and random”

Short Communications

Abstract

This paper proves rigorously that the structure factor of the “structure intermediate between quasiperiodic and random” introduced by Aubry. Godréche, and Luck is purely singluar continuous apart from a delta function at zero for “most” choices of the parameters. The result is based on a proof that a flow under a steep function over an irrational circle rotation is weakly mixing for “most” parameters, and on the wonderland Theorem.

Key Words

Diffraction aperiodic structures flow under a function periodic approximation weak mixing singular continuous spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Aubry, C. Godrèche, and J. M. Luck, A structure intermediate between quasiperiodic and random,Europhys. Lett. 4:639–643 (1987).Google Scholar
  2. 2.
    S. Aubry, C. Godrèche, and J. M. Luck, Scaling properties of a structure intermediate between quasipweriordic and random,J. Stat. Phys. 51:1033–1074 (1988).Google Scholar
  3. 3.
    H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1,Acta Aritlun. 12:193–212 (1966).Google Scholar
  4. 4.
    A. Guinier,Xr-Ray Diffraction (Dover, New York, 1994).Google Scholar
  5. 5.
    A. Hof, On diffraction by aperiodic structures,Commun. Math. Phys. 169:25–43 (1995).Google Scholar
  6. 6.
    B. Simon, Operators with singular continuous spectrum: I. General operators,Ann. Math. 1995:131–145.Google Scholar
  7. 7.
    J. von Neumann, Zur Operatorenmethode in der Klassischen Mechanik,Ann. Math. 33:587–642 (1932).Google Scholar
  8. 8.
    I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).Google Scholar
  9. 9.
    R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979).Google Scholar
  10. 10.
    S. Dworkin, Spectral theory and X-ray diffraction,J. Math. Phys. 34:2965–2967 (1993).Google Scholar
  11. 11.
    K. Merrill, Cohomology of step functions under irrational rotations,Isr. J. Math. 52:320–340 (1985).Google Scholar
  12. 12.
    L. Baggett, On circle-valued cocycles of an ergodic measure preserving transformation.Isr. J. Math. 61:29–38 (1988).Google Scholar
  13. 13.
    H. Furstenberg, Strict ergodicity and transformation of the torus,Am. J. Math. 88:573–601 (1961).Google Scholar
  14. 14.
    A. B. Katok and A. M. Stepin, Approximations in ergodic theory,Russ. Math. Surv. 22:77–102 (1968).Google Scholar
  15. 15.
    W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2,Trans. Am. Math. 140:1–33 (1969).Google Scholar
  16. 16.
    G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 3rd ed. (Oxford University Press, Oxford, 1956).Google Scholar
  17. 17.
    M. Steward, Irregularities of uniform distributions,Acta Math. Acad. Scient. Hung. 37:185–221 (1981).Google Scholar
  18. 18.
    W. A. Veech, Topological dynamics.,Bull. Am. Math. Soc. 83:775–830 (1977).Google Scholar
  19. 19.
    O. Knill, Singular continuous spectrum inergodic theory, Preprint California Institute of Technology (1995) [Available as paper 95-193 on mp_arc@math.utexas.edu].Google Scholar
  20. 20.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics I. Functional Analysis, rev. enlarged ed. (Academic Press, 1980).Google Scholar
  21. 21.
    A. V. Kočergin, Time changes in flows and mixing,Math. USSR Izv. 7:1273–1294 (1973).Google Scholar
  22. 22.
    A. V. Kočergin, On the absence of mixing in special flows over the rotation of a circle and in flows on a two-dimensional torus.Sov. Math. Dokl. 13:949–952 (1972).Google Scholar
  23. 23.
    W. Parry,Topics in Ergodic Theory. (Cambridge University Press, Cambridge, 1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. Hof
    • 1
  1. 1.Department of Mathematics and StatsticsMcMaster UniversityHamiltonCanada

Personalised recommendations