Advertisement

Journal of Statistical Physics

, Volume 83, Issue 5–6, pp 1067–1108 | Cite as

Metastable fluid flow described via a discrete-velocity coagulation-fragmentation model

  • M. Slemrod
Articles

Abstract

A discrete-velocity Boltzmann model is introduced. It is based on two principles: (i) clusters of particles move in ℝ3 with seven fixed momenta; (ii) clusters may gain or lose particles according to the rules of Becker-Döring cluster equations. The model provides a kinetic representation of evaporation and condensation. The model is used to obtain macroscopic fluid equations which are valid into the metastable fluid regime,\(0 \leqslant \rho< \rho _s + O(\mu ^\sigma )\), where σ is any positive number, μ is the inelastic Knudsen number, andρ s is the saturation density.

Key Words

Boltzmann equation evaporation condensation cluster nucleation shock wave metastability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Ball and J. Carr, Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data,Proc. R. Soc. Edinburgh A 1988:109–116.Google Scholar
  2. 2.
    J. M. Ball, J. Carr, and O. Penrose, The Becker-Döring cluster equations: Basic properties and asymptotic behavior of solutions,Commun. Math. Phys. 104:657–692 (1986).Google Scholar
  3. 3.
    N. Bellomo and L. de Socio, The discrete Boltzmann equation for gas mixtures: A regular space model and a shock wave problem,Mech. Res. Comm. 10:233–238 (1983).Google Scholar
  4. 4.
    J. Brock, Simulation of aerosol dynamics, inTheory of Dispersed Multiphase Flow, R. E. Meyer, ed. (Academic Press, New York, 1983), pp. 135–172.Google Scholar
  5. 5.
    G.-Q. Chen, C. D. Levermore, and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy,Commun. Pure Appl. Math. 47:787–830 (1994).Google Scholar
  6. 6.
    S. Chen, H. Chen, G. D. Doolen, Y. C. Lee, H. Rose, and H. Brand, Lattice gas models for nonideal gas fluids,Physica D 47:97–111 (1991).Google Scholar
  7. 7.
    S. K. Friedlander,Smoke, Dust, and Haze. Fundamentals of Aerosol Behavior (Wiley, New York, 1977).Google Scholar
  8. 8.
    E. Longo and R. Monaco, On the thermodynamics of discrete models of the Boltzmann equation for gas mixtures,Transport Theory Stat. Phys. 17:423–442 (1988).Google Scholar
  9. 9.
    R. Monaco and M. Pandolfi Bianchi, A discrete velocity model for gases with chemical reactions of disassociation and recombination, inAdvances in Kinetic Theory and Continuum Mechanics, R. Gatignol and Soubbaramayer, eds. (Springer-Verlag, Berlin, 1991), pp. 169–181.Google Scholar
  10. 10.
    R. Monaco and L. Preziosi,Fluid Dynamics Applications of the Discrete Boltzmann Equation (World Scientific, Singapore, 1991).Google Scholar
  11. 11.
    O. Penrose,Kinetics of Phase Transitions (Springer-Verlag, Berlin, 1978).Google Scholar
  12. 12.
    O. Penrose, Metastable states for the Becker-Döring cluster equations,Commun. Math. Phys. 124:515–541 (1984).Google Scholar
  13. 13.
    O. Penrose and J. L. Lebowitz, Towards a rigorous molecular theory of metastability, inStudies in Statistical Mechanics VII (Fluctuation Phenomena), E. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1979), pp. 293–340.Google Scholar
  14. 14.
    M. Slemrod, Trend to equilibrium in the Becker-Döring cluster equations,Nonlinearity 2:429–443 (1989).Google Scholar
  15. 15.
    M. Slemrod, M. Grinfeld, A. Qi, and I. Stewart, A discrete velocity coagulation—fragmentation model,Math. Meth. Appl. Sci. 18:959–994 (1995).Google Scholar
  16. 16.
    M. Slemrod and A. Qi, Numerical simulations of cluster formation using a discrete velocity kinetic theory of gases,Math. Models Meth. Appl. Sci. 5:619–640 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. Slemrod
    • 1
  1. 1.Center for the Mathematical SciencesUniversity of Wisconsin-MadisonMadison

Personalised recommendations