Skip to main content
Log in

Turbulence noise

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that the large-eddy motions in turbulent fluid flow obey a modified hydrodynamic equation with a stochastic turbulent stress whose distribution is a causal functional of the large-scale velocity field itself. We do so by means of an exact procedure of “statistical filtering” of the Navier-Stokes equations, which formally solves the closure problem, and we discuss the relation of our analysis with the “decimation theory” of Kraichnan. We show that the statistical filtering procedure can be formulated using field-theoretic path-integral methods within the Martin-Siggia-Rose (MSR) formalism for classical statistical dynamics. We also establish within the MSR formalism a “least-effective-action principle” for mean turbulent velocity profiles, which generalizes Onsager's principle of least dissipation. This minimum principle is a consequence of a simple realizability inequality and therefore holds also in any realizable closure. Symanzik's theorem in field theory—which characterizes the static effective action as the minimum expected value of the quantum Hamiltonian over all state vectors with prescribed expectations of fields—is extended to MSR theory with non-Hermitian Hamiltonian. This allows stationary mean velocity profiles and other turbulence statistics to be calculated variationally by a Rayleigh-Ritz procedure. Finally, we develop approximations of the exact Langevin equations for large eddies, e.g., a random-coupling DIA model, which yield new stochastic LES models. These are compared with stochastic subgrid modeling schemes proposed by Rose, Chasnov, Leith, and others, and various applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Kraichnan, Eddy viscosity in two and three dimensions,J. Atmos. Sci. 33:1521 (1976).

    Google Scholar 

  2. R. H. Kraichnan, Eddy viscosity and diffusivity: Exact formulas and approximations,Complex Systems 1:805 (1987).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, New York, 1959), Chapter 17.

    Google Scholar 

  4. H. A. Rose, Eddy diffusivity, eddy noise, and sub-grid scale modelling,J. Fluid Mech. 81:719 (1977).

    Google Scholar 

  5. C. E. Leith, Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer,Phys. Fluids A 2:297 (1990).

    Google Scholar 

  6. J. R. Chasnov, Simulation of the Kolmogorov inertial subrange using an improved subgrid model,Phys. Fluids A 3:188 (1991).

    Google Scholar 

  7. P. J. Mason and D. J. Thomson, Stochastic backscatter in large-eddy simulations of boundary layers,J. Fluid Mech. 242:51 (1992).

    Google Scholar 

  8. D. Carati, Iterative filtering of the forced Navier-Stokes equation, Preprint (1994).

  9. V. Yakhot and S. A. Orszag, Renormalization group analysis of turbulence, I. Basic theory,J. Sci. Comp. 1:3 (1986).

    Google Scholar 

  10. R. H. Kraichnan, Decimated amplitude equations in turbulence dynamics, inTheoretical Approaches to Turbulence, D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt, eds. (Springer, New York, 1985).

    Google Scholar 

  11. P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems,Phys. Rev. A 8:423 (1973).

    Google Scholar 

  12. L. Onsager, Reciprocal relations in irreversible processes. I, II,Phys. Rev. 37:405 (1931);38:2265 (1931).

    Google Scholar 

  13. G. L. Eyink, Large-eddy simulation and the “multifractal model” of turbulence:a priori estimates on subgrid flux and locality of energy transfer,Phys. Fluids, submitted (1994).

  14. M. Germano, Turbulence: The filtering approach,J. Fluid Mech. 238:325 (1992).

    Google Scholar 

  15. M. Germano, A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations,Phys. Fluids 29:2323 (1986).

    Google Scholar 

  16. A. Leonard, On the energy cascade in large-eddy simulations of turbulent flows,Adv. Geophys. 18A:237 (1974).

    Google Scholar 

  17. D. Ruelle, Measures describing a turbulent flow,Ann. N.Y. Acad. Sci. 357:1 (1980).

    Google Scholar 

  18. J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,Rev. Mod. Phys. 57:617 (1985).

    Google Scholar 

  19. D. Ruelle, Microscopic fluctuations and turbulence,Phys. Lett. A 72:81 (1979).

    Google Scholar 

  20. P. C. Hohenberg and B. Shraiman, Chaotic behavior of an extended system,Physica D 37:109 (1989).

    Google Scholar 

  21. V. Yakhot, Large-scale properties of unstable systems governed by the Kuramoto-Sivashinsky equation,Phys. Rev. A 24:642 (1983).

    Google Scholar 

  22. S. Zaleski, A stochastic model for the large scale dynamics of some fluctuating interfaces,Physica D 34:427 (1989).

    Google Scholar 

  23. K. Sneppenet al., Dynamic scaling and crossover analysis for the Kuramoto-Sivashinsky equation,Phys. Rev. A 46:R7351 (1992).

    Google Scholar 

  24. E. Lorenz, Maximum simplification of the dynamic equations,Tellus 12:243 (1960).

    Google Scholar 

  25. R. Phythian, The operator formalism of classical statistical dynamics,J. Phys. A 8:1423 (1975).

    Google Scholar 

  26. R. Phythian, Further application of the Martin, Siggia, Rose formalism,J. Phys. A 9:269 (1976).

    Google Scholar 

  27. H. K. Janssen, On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties,Z. Phys. B 23:377 (1976).

    Google Scholar 

  28. C. DeDominicis, Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques,J. Phys. (Paris)C 1:247 (1976).

    Google Scholar 

  29. R. Graham, Path integral formulation of general diffusion processes,Z. Phys. B 26:281 (1977).

    Google Scholar 

  30. R. Graham, Short-time propagators in Riemannian geometries, inStatphys 13 (Proceedings of the 13th IUPAP Conference on Statistical Physics, Haifa, 1977).

  31. U. Weiss, Operator ordering schemes and covariant path integrals of quantum and stochastic processes in curved space,Z. Phys. B 30:429 (1978).

    Google Scholar 

  32. C. Wissel, Manifolds of equivalent path integral solutions of the Fokker-Planck equations,Z. Phys. B 35:185 (1979).

    Google Scholar 

  33. L. Arnold,Stochastic Differential Equations: Theory and Applications (Wiley, New York, 1974).

    Google Scholar 

  34. T. D. Lee, On some statistical properties of the hydrodynamical and magnetohydrodynamical fields,Q. Appl. Math. 10:69 (1952).

    Google Scholar 

  35. H. W. Wyld, Formulation of the theory of turbulence in an incompressible fluid,Ann. Phys. (N.Y.)14:143 (1961).

    Google Scholar 

  36. R. H. Kraichnan, Dynamics of nonlinear stochastic systems,J. Math. Phys. 2:124 (1961).

    Google Scholar 

  37. V. E. Zakharov and V. S. L'vov, Statistical description of nonlinear wave fields,Izv. Vyss. Uch. Zav. Radiofiz. 18:1470 (1975).

    Google Scholar 

  38. R. H. Kraichnan, Eulerian and Lagrangian renormalization in turbulence theory,J. Fluid Mech. 83:349 (1977).

    Google Scholar 

  39. G. L. Eyink, The renormalization group method in statistical hydrodynamics,Phys. Fluids 6:3063 (1994).

    Google Scholar 

  40. V. S. L'vovet al., Proof of scale invariant solutions in the Kardar-Parisi-Zhang and Kuramoto-Sivashinsky equations in 1+1 dimensions: Analytical and numerical results,Nonlinearity 6:25 (1993).

    Google Scholar 

  41. K. Symanzik, Renormalizable models with simple symmetry breaking,Commun. Math. Phys. 16:48 (1970).

    Google Scholar 

  42. W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons,Z. Phys. 98:714 (1936).

    Google Scholar 

  43. J. Schwinger, On gauge invariance and vacuum polarization,Phys. Rev. 82:664 (1951).

    Google Scholar 

  44. L. Onsager and S. Machlup, Fluctuations and irreversible processes,Phys. Rev. 91:1505 (1953).

    Google Scholar 

  45. R. Graham, Path-integral methods in nonequilibrium thermodynamics and statistics, inStochastic Processes in Nonequilibrium Systems, L. Garrido, P. Seglar, and P. J. Shepherd, eds. (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  46. G. L. Eyink, Dissipation and large thermodynamic fluctuations,J. Stat. Phys. 61:533 (1990).

    Google Scholar 

  47. J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators,Phys. Rev. D 10:2428 (1974).

    Google Scholar 

  48. H. Risken,The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  49. M. Hausner and J. T. Schwartz,Lie Groups and Their Lie Algebras (Gordon and Breach, New York, 1968).

    Google Scholar 

  50. D. Ruelle, Locating resonances for Axiom A dynamical systems,J. Stat. Phys. 44:281 (1986).

    Google Scholar 

  51. R. Jackiw and A. Kerman, Time-dependent variational principle and effective action,Phys. Lett. A 71:158 (1979).

    Google Scholar 

  52. P. A. M. Dirac, Note on exchange phenomena in the Thomas atom,Proc. Camb. Phil. Soc. 26:376 (1930).

    Google Scholar 

  53. R. H. Kraichnan, Convergents to turbulence functions,J. Fluid Mech. 41:189 (1970).

    Google Scholar 

  54. R. H. Kraichnan, Irreversible statistical mechanics of incompressible hydromagnetic turbulence,Phys. Rev. 109:1407 (1958).

    Google Scholar 

  55. R. H. Kraichnan, Variational method in turbulence theory,Phys. Rev. Lett. 42:1263 (1979).

    Google Scholar 

  56. J. Qian, Variational approach to the closure problem of turbulence theory,Phys. Fluids 26:2098 (1983).

    Google Scholar 

  57. B. Castaing, Conséquences d'un principe d'extrémum en turbulence,J. Phys. (Paris)50:147 (1989).

    Google Scholar 

  58. F. H. Busse, The optimum theory of turbulence,Adv. Appl. Math. 18:77 (1978).

    Google Scholar 

  59. J. R. Herring and R. H. Kraichnan, Comparison of some approximations for isotropic turbulence, inStatistical Models and Turbulence, M. Rosenblatt and C. Van Atta, eds. (Springer, New York, 1972).

    Google Scholar 

  60. C. Meneveau and A. Chhabra, Two-point statistics of multifractal measures,Physica A 164:564 (1990).

    Google Scholar 

  61. C. E. Leith and R. H. Kraichnan, Predictability of turbulent flows,J. Atmos. Sci. 29:1041 (1972).

    Google Scholar 

  62. E. N. Lorenz, Deterministic non-periodic flow,J. Atmos. Sci. 20:130 (1963).

    Google Scholar 

  63. R. A. Pielkeet al., Several unresolved isues in numerical modelling of geophysical flows,Atmos. Oceans, submitted.

  64. C. C. Chow and T. Hwa, Defect-mediated stability: an effective hydrodynamic theory of spatiotemporal chaos, Preprint [chao-dyn@xyz.lanl.gov, #9412041].

  65. C. Jarzynski, Thermalization of a Brownian particle via coupling to low-dimensional chaos,Phys. Rev. Lett. 74:2937 (1995).

    Google Scholar 

  66. D. N. Zubarev and V. G. Morozov, Statistical mechanics of nonlinear hydrodynamic fluctuations,Physica 120A:411 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyink, G.L. Turbulence noise. J Stat Phys 83, 955–1019 (1996). https://doi.org/10.1007/BF02179551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179551

Key Words

Navigation