Skip to main content
Log in

Statistical mechanical theory of the great red spot of jupiter

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a previous study a permanent isolated vortex like the Great Red Spot of Jupiter was obtained as a statistical equilibrium for the classical quasigeostrophic model of atmospheric motion on rapidly rotating planets. We provide here a theoretical basis for this work and relate it to a previous model of the spot (Rossby soliton).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. V. Antipov, M. V. Nezlin, E. N. Snezhkin, and A. S. Trubnikov,Nature 323: 238–240 (1986).

    Google Scholar 

  2. P. Baldi, Large deviations and stochastic homogenization,Ann. Mat. Pura Appl. 4(151):161–177 (1988).

    Google Scholar 

  3. E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description,Commun. Math. Phys. 143:501–525 (1992).

    Google Scholar 

  4. A. J. Chorin,Lectures on Turbulence Theory (Publish or Perish, 1975).

  5. T. E. Dowling and A. P. Ingersol,J. Atomos. Sci. 46:3256–3278 (1989).

    Google Scholar 

  6. R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer-Verlag, 1985).

  7. G. L. Eyink and H. Spohn, Negative temperature states and large-scale long-lived vortices in two-dimensional turbulence,J. Stat. Phys. 70(3/4):833–887 (1993).

    Google Scholar 

  8. E. J. Hopfinger, Turbulence and vortices in rotating fluids, inProceedings of the XVIIth International Congress of Theoretical and Applied Mechanics (North-Holland, 1989).

  9. A. P. Ingersol, Atmospheric dynamics of the outer planets,Science 248:308 (1990).

    Google Scholar 

  10. A. P. Ingersol and P. G. Cuong,J. Atmos. Sci. 38:2067–2076 (1981).

    Google Scholar 

  11. M. Jirina, On regular conditional probabilities,Czech. Math. J. 9(3):445 (1959).

    Google Scholar 

  12. M. K. H. Kiessling,Commun. Pure Appl. Math. 46:27–56 (1993).

    Google Scholar 

  13. P. S. Marcus,Nature 331:693–696 (1988).

    Google Scholar 

  14. T. Maxworthy and L. G. Redekopp,Icarus 29:261–271 (1976).

    Google Scholar 

  15. J. Michel, Thesis, Université Lyon 1 (1993).

  16. J. Michel and R. Robert, Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law,Commun. Math. Phys. 159:195–215 (1994).

    Google Scholar 

  17. J. Miller, Statistical mechanics of Euler equations in two dimensions,Phys. Rev. Lett. 65(17):2137–2140 (1990).

    Google Scholar 

  18. J. Miller, P. B. Weichman, and M. C. Cross, Statistical mechanics, Euler's equation, and Jupiter's Red Spot,Phys. Rev. A 45:2328–2359 (1992).

    Google Scholar 

  19. D. Montgomery and G. Joyce, Statistical mechanics of negative temperature states,Phys. Fluids 17:1139–1145 (1974).

    Google Scholar 

  20. P. J. Olver,Applications of Lie Groups to Differential Equations (Springer-Verlag, 1986).

  21. L. Onsager, Statistical hydrodynamics,Nuovo Cimento (Suppl. 6)1949:279.

  22. V. I. Petiashvili,Sov. Astron. Lett. 9:137–138 (1983).

    Google Scholar 

  23. J. Pedlosky,Geophysical Fluid Dynamics, 2nd ed. (Springer-Verlag, 1987).

  24. Y. B. Pointin and T. S. Lundgren, Statistical mechanics of two dimensional vortices in a bounded container,Phys. Fluids 10:1459–70 (1976).

    Google Scholar 

  25. R. Robert, A maximum entropy principle for two-dimensional Euler equations,J. Stat. Phys. 65(3/4): 531–553 (1991).

    Google Scholar 

  26. R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows,J. Fluid Mech. 229:291–310 (1991).

    Google Scholar 

  27. N. N. Romanova and V. Y. Tseytlin, On quasigeostrophic motions in barotropic and baroclinic fluids,Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 20(2):115–124 (1984).

    Google Scholar 

  28. N. N. Romanova and V. Y. Tseytlin, Solitary Rossby waves in a weakly stratified medium,Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 21(8):627–630 (1985).

    Google Scholar 

  29. J. Sommeria, S. D. Meyers, and H. L. Swinney, Laboratory simulation of Jupiter's Great Red Spot,Nature 331:1 (1988).

    Google Scholar 

  30. J. Sommeria, C. Nore, T. Dumont, and R. Robert, Théorie statistique de la tache rouge de Jupiter,C. R. Acad. Sci. Paris 312(Ser. II):999–1005 (1991).

    Google Scholar 

  31. J. Sommeria, R. Robert, and T. Dumont, To appear.

  32. J. Sommeria, C. Staquet, and R. Robert, Final equilibrium state of a two-dimensional shear layer,J. Fluid Mech. 233:661–689 (1991).

    Google Scholar 

  33. S. R. S. Varadhan, Large deviations and applications, inEcole d'été de probabilités de Saint-Flour XV–XVII (1985–87).

  34. V. I. Youdovitch, Non stationary flow of an ideal incompressible liquid,Zh. Vych. Mat. 3:1032–1066 (1963).

    Google Scholar 

  35. L. C. Young, Generalized surfaces in the calculus of variations,Ann. Math. 43:84–103 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, J., Robert, R. Statistical mechanical theory of the great red spot of jupiter. J Stat Phys 77, 645–666 (1994). https://doi.org/10.1007/BF02179454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179454

Key Words

Navigation