Advertisement

Journal of Statistical Physics

, Volume 79, Issue 1–2, pp 347–376 | Cite as

Ground-state energy of a quantum chain with competing interactions

  • C. E. I. Carneiro
  • M. J. de Oliveira
  • W. F. Wreszinski
Articles

Abstract

We show rigorously that the ground state of a quantum chain with competing ferromagnetic nearest and antiferromagnetic next nearest interactions undergoes a transition from ferromagnetic to helical type, in the isotropic case, for a certain value of the relevant ratio of coupling constants. Boundaries of the phase diagram are also determined in the anisotropic case. The stability of a special quantum state (corresponding to a classical modulated phase of ⫇=п/3) is analyzed by an extension of Holstein-Primakoff arguments, along a line of constant ratio of couplings, showing in particular a sequence of (instability) gaps. Finally, a natural adaptation of a variational wave function due to Huse and Elser is used to study several portions of the phase diagram, with very good agreement with previous theoretical results.

Key Words

Quantum chain competing interactions ferromagnetic and helical ground state spin waves variational wave functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Sen and B. K. Chakrabarti,Int. J. Mod. Phys. B 6:2439 (1992).Google Scholar
  2. 2.
    E. Dagotto,Int. J. Mod. Phys. B 5:907 (1991).Google Scholar
  3. 3.
    C. K. Majundar and D. Ghosh,J. Math. Phys. 10:1388 (1969).Google Scholar
  4. 4.
    P. Sen,Physica A 186:306 (1992).Google Scholar
  5. 5.
    W. J. Caspers and W. Magnus,Physica A 119:291 (1983).Google Scholar
  6. 6.
    I. Affleck, T. Kennedy, E. Lieb, and H. Tasaki,Phys. Rev. Lett. 59:799 (1987);Commun. Math. Phys. 115:477 (1988).Google Scholar
  7. 7.
    F. C. Alcaraz and W. F. Wreszinski,J. Stat. Phys. 58:45 (1990).Google Scholar
  8. 8.
    W. J. Caspers,Spin Systems (World Scientific, Singapore, 1992).Google Scholar
  9. 9.
    W. F. Wreszinski and S. R. A. Salinas,Disorder and Competition in Soluble Lattice Models (World Scientific, Singapore, 1993).Google Scholar
  10. 10.
    H. P. Bader and R. Schilling,Phys. Rev. B. 19:3556 (1979); see also P. M. van den Broeck,Phys. Lett. A 77:261 (1980).Google Scholar
  11. 11.
    A. Yoshimori,J. Phys. Soc. Japan 14:807 (1959); see also J. Villain,J. Phys. Chem. Solids 23:287 (1962).Google Scholar
  12. 12.
    S. Redner,J. Stat. Phys. 25:15 (1981).Google Scholar
  13. 13.
    C. S. O. Yokoi, M. J. de Oliveira, and S. R. A. Salinas,Phys. Rev. Lett. 54:163 (1985).Google Scholar
  14. 14.
    P. Bak and H. Fukuyama,Phys. Rev. B 21:3287 (1980).Google Scholar
  15. 15.
    J. L. van Hemmen, A. A. S. Brito, and W. F. Wreszinski,J. Stat. Phys. 37:187 (1984).Google Scholar
  16. 16.
    D. A. Huse and V. Elser,Phys. Rev. Lett. 60:2531 (1988).Google Scholar
  17. 17.
    E. H. Lieb and D. C. Mattis,J. Math. Phys. 3:744 (1962).Google Scholar
  18. 18.
    L. Landau and E. Lifschitz,Mécanique Quantique (Mir, Moscow, 1967), Chapter IX.Google Scholar
  19. 19.
    I. Affleck and E. H. Lieb,Lett. Math., Phys. 12:57 (1986).Google Scholar
  20. 20.
    T. Nagamiya,Solid State Phys. 20:305 (1967).Google Scholar
  21. 21.
    R. M. White, M. Sparks and I. Ortenbureger,Phys. Rev. 139:450 (1965).Google Scholar
  22. 22.
    W. Marshall,Proc. R. Soc. A 232:48 (1955).Google Scholar
  23. 23.
    D. A. Huse,Phys. Rev. B 37:2380 (1988).Google Scholar
  24. 24.
    D. J. Thouless,Proc. Phys. Soc. Lond. 90:243 (1967).Google Scholar
  25. 25.
    J. L. Kaplan and J. A. Yorke, InLecture Notes in Mathematics, Vol., 730 (1979), p. 204.Google Scholar
  26. 26.
    R. Graham,Phys. Lett. A 99:131 (1983).Google Scholar
  27. 27.
    F. C. Alcaraz, S. R. Salinas, and W. F. Wreszinski, Preprint, Universidade de São Paulo.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • C. E. I. Carneiro
    • 1
  • M. J. de Oliveira
    • 1
  • W. F. Wreszinski
    • 1
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations