Studia Geophysica et Geodaetica

, Volume 22, Issue 4, pp 330–335 | Cite as

Filtration and prediction of inhomogeneous anomalous geophysical potential fields

  • Lubomír Kubáček
  • Ludmila Kubáčková
  • M. Burda
Article
  • 19 Downloads

Summary

A mathematical model for optimum prediction, filtration and simultaneous prediction and filtration of the fields considered has been constructed using Hilbert spaces with a reproduction kernel, formed by the covariance function of the observed anomalous geophysical potential field under the assumption that the field is an inhomogeneous random function.

Keywords

Filtration Mathematical Model Covariance Hilbert Space Structural Geology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Aronszajn: Theory of Reproducing Kernels. Trans. Am. Math. Soc., 68 (1950), 337.Google Scholar
  2. [2]
    T. Krarup: A Contribution to the Mathematical Foundation of Physical Geodesy. Geod. Inst. Meddelelse No 44, København 1969.Google Scholar
  3. [3]
    L. Kubáček: Universal Model for Adjusting Observed Values. Studia geoph. et geod., 20 (1976), 103.Google Scholar
  4. [4]
    L. Kubáček, L. Kubáčková: The Present Approach to the Study of the Least-Squares Method. Studia geoph. et geod., 22 (1978), 140.Google Scholar
  5. [5]
    L. Kubáčková: Mathematical Model for Optimum Wiener Filtration of Continuous Geophysical Fields. Travaux Inst. Géophys. Acad. Tchécosl. Sci. No 321, Geofysikální sborník 1970, Academia, Praha 1972.Google Scholar
  6. [6]
    L. Kubáčková: Coefficients of Linear Filtration of Anomalous Gravity Fields Derived by Applying the Criterion ∥ϑ — ϑoptH=min. Travaux Inst. Géophys. Acad. Tchécosl. Sci. No 481, Geofysikální sborník 1977, Academia, Praha (in print).Google Scholar
  7. [7]
    S. L. Lauritzen: The Probalistic Background of Some Statistical Methods in Physical Geodesy. Geod. Inst., Meddelelse No 48, København 1973.Google Scholar
  8. [8]
    М. Лоэв: Теория вероятностей. Изд. Иностр. лит., М. 1962.Google Scholar
  9. [9]
    E. Parzen: Time Series Analysis Papers. Holden-Day, San Francisco 1967.Google Scholar
  10. [10]
    W. Schwahn: Die Beziehungen zwischen den Autokovarianzfunktionen der Potentialfelder und denen der Quellenverteilung unter besonderer Berücksichtigung der realen geologischen Situation. Dissertation A, ZIPE, Potsdam 1976.Google Scholar
  11. [11]
    F. Štulajter: The Linear Filtration and Prediction of Indirectly Observed Random Processes. Kybernetika, 12 (1976), 316.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1978

Authors and Affiliations

  • Lubomír Kubáček
    • 1
  • Ludmila Kubáčková
    • 2
  • M. Burda
  1. 1.Institute of Measurements and Measuring EquipmentStovak Acad. Sci.Bratislava
  2. 2.Geophysical InstituteSlovak Acad. Sci.Bratislava

Personalised recommendations