Journal of Statistical Physics

, Volume 80, Issue 3–4, pp 565–578 | Cite as

Velocity autocorrelation function in lattice gases from the ring kinetic theory. Comparison with numerical simulations

  • R. Brito
  • G. A. van Velzen


We obtain the complete time dependence of the velocity autocorrelation function (VACF) for lattice gas cellular automata, usingring kinetic theory. This theory accounts for the simplest correlated collisions that improve on the molecular chaos approach, and yields a closed equation for the VACF that we evaluate for both infinite and finite systems. We compare our analytical results with numerical simulations at all times, as well as with long-time results of the mode coupling theories, finding a very good agreement for all times at all densities.

Key Words

Lattice gas automata velocity autocorrelation function diffusion coefficient ring collisions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hansen and I. R. McDonald,Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).Google Scholar
  2. 2.
    B. J. Alder and T. E. Wainwright,Phys. Rev. A 1:18 (1970).Google Scholar
  3. 3.
    M. H. Ernst, E. Hauge, and J. M. J. van Leeuwen,Phys. Rev. A 4:2055 (1971);J. Stat. Phys. 15:7 (1976).Google Scholar
  4. 4.
    U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).Google Scholar
  5. 5.
    U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet,Complex. Syst. 1:649 (1987).Google Scholar
  6. 6.
    D. Frenkel and M. H. Ernst,Phys. Rev. Lett. 63:2165 (1989).Google Scholar
  7. 7.
    M. A. van der Hoef and D. Frenkel,Phys. Rev. A 41:4277 (1990).Google Scholar
  8. 8.
    T. Naitoh, M. H. Ernst, and J. W. Dufty,Phys. Rev. A 42:7187 (1990).Google Scholar
  9. 9.
    M. A. van der Hoef and D. Frenkel,Physica D 47:191 (1991).Google Scholar
  10. 10.
    M. A. van der Hoef, M. Dijkstra, and D. Frenkel,Europhys Lett. 17:39 (1992).Google Scholar
  11. 11.
    T. Naitoh, M. H. Ernst, M. A. van der Hoef, and D. Frenkel,Phys. Rev. A 44:24834 (1991).Google Scholar
  12. 12.
    T. Naitoh and M. H. Ernst, InProceeding Euromech Colloquium 267, A. S. Alves, ed. (World Scientific, Singapore, 1991), p. 166.Google Scholar
  13. 13.
    J. J. Erpenbeck and W. W. Wood,Phys. Rev. A 26:1648 (1982);32:412 (1985).Google Scholar
  14. 14.
    T. R. Kirkpatrick and M. H. Ernst,Phys. Rev. A 44:8051 (1991).Google Scholar
  15. 15.
    R. Brito and M. H. Ernst,Phys. Rev. A 46:875 (1992).Google Scholar
  16. 16.
    G. A. van Velzen, R. Brito, and M. H. Ernst,J. Stat. Phys. 70:811 (1993).Google Scholar
  17. 17.
    M. H. Ernst and T. Naitoh,J. Phys. A 24:2555 (1991).Google Scholar
  18. 18.
    M. H. Ernst and J. W. Dufty,J. Stat. Phys. 58:57 (1990).Google Scholar
  19. 19.
    M. H. Ernst,Liquids, Freezing and the Glass Transition, Les Houches, Session LI, 1989, D. Levesque, J. P. Hansen, and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1991), p. 43.Google Scholar
  20. 20.
    Y. Pomeau and P. Résibois,Phys. Rep. 19:64 (1975).Google Scholar
  21. 21.
    T. R. Wainwright, B. J. Alder, and D. M. Gass,Phys. Rev. A 4:233 (1971).Google Scholar
  22. 22.
    M. A. van der Hoef and D. Frenkel,Phys. Rev. Lett. 66:1591 (1991).Google Scholar
  23. 23.
    D. d'Humières and P. Lallemand,Complex Syst. 1:599 (1987).Google Scholar
  24. 24.
    M. Gerits, M. H. Ernst, and D. Frenkel,Phys. Rev. A 48:988 (1993).Google Scholar
  25. 25.
    B. J. Alder and W. E. Alley,Phys. Today 37:56 (1984).Google Scholar
  26. 26.
    M. Henon,Complex Syst. 1:475 (1987).Google Scholar
  27. 27.
    R. Brito and M. H. Ernst,Phys. Rev. A 44:8384 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. Brito
    • 1
  • G. A. van Velzen
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Physical Planning DivisionGrontmij Consulting EngineersDe BiltThe Netherlands

Personalised recommendations