The effect of long-term irradiation with fluorescent light on the rat fundus

Abstract

In the rat, continous exposure to so-called “cold light” of 800 lux leads to a nearly complete loss of retinal photoreceptors, which occurs within 4 weeks. This process is followed by vascularization of the retinal pigment epithelium (RPE). The origin, extent, and expansion of such proliferations within 6 months after the onset of irradiation were evaluated by means of light microscopy, transmission electron microscopy, scanning electron microscopy, corrosion cast preparation, india ink injection, and trypsin digest preparation. The vessels within the RPE were found to be fenestrated and to form a network with the vessels of the neurosensory retina. Invasion of Bruch's membrane and formation of chorioretinal anastomoses were not observed. The occurrence of vessels within the RPE coincided with a massive regression of capillaries in the neurosensory retina.

This is a preview of subscription content, access via your institution.

References

  1. Augsburger JJ, Benson WE (1980) Subretinal neovascularization, in chronic uveitis. Graefe's Arch Clin Exp Ophthalmol 215:43–51

    Google Scholar 

  2. Bellhorn RW, Burns MS, Benjamin JV (1980) Retinal vessel abnormalities of phototoxis retinopathy in rats. Invest Ophthalmol Vis Sci 19:584–595

    Google Scholar 

  3. Dalton AG (1955) A chrome-osmium fixation for electron microscopy. Anat Rec 121:281

    Google Scholar 

  4. De Mott DW, Davis TP (1959) Irradiance threshold for chorioretinal lesions. Arch Ophthalmol 62:653–656

    Google Scholar 

  5. Dollery CT, Bulpitt CJ, Kohner EM (1969) Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest Ophthalmol 8: 588–594

    Google Scholar 

  6. El-Hifnawi E (1984) Pathomorphologische Untersuchungen zum Verlauf der hereditären Netzhaut-Dystrophie bei R.C.S.-Ratten. Enke, Stuttgart

    Google Scholar 

  7. El-Hifnawi E, Koch F (1982) Licht- und elektronenmikroskopische Untersuchungen an retinalen und chorioidalen Gefäßen bei Wistar-Ratten. Verh Anat Ges 76:425–426

    Google Scholar 

  8. Francois J, De Laey JJ, Cambie E, Hanssens M, Victoria-Troncoso V (1975) Neovascularization after Argon laser photocoagulation of macular lesions. Am J Ophthalmol 79:206–210

    Google Scholar 

  9. Friedman E, Smith TR, Kuwabara T (1963) Senile choroidal vascular patterns and drusen. Arch Ophthalmol 69:220–230

    Google Scholar 

  10. Geeraets WJ, Ridgeway D (1963) Retinal damage from high intensity light. Acta Ophthalmol 76:109–112

    Google Scholar 

  11. Grignolo A, Orzalesi N, Castellazzo R, Vittone P (1969) Retinal damage by visible light in albino rats: an electron microscope study. Ophthalmologica 157:43–59

    Google Scholar 

  12. Grindle CFJ, Marshall J (1978) Ageing changes in Bruch's membrane and their functional implications. Trans Ophthalmol Soc UK 98:172–175

    Google Scholar 

  13. Ham WT, Ruffolo JJ, Mueller HA, Clarke AM, Moon ME (1978) Histologic analysis of phototechnical lesions produced in Rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci 17:1029–1035

    Google Scholar 

  14. Ham WT, Mueller HA, Ruffolo JJ, Clarke AM (1979) Sensitivity of the retina to radiation damage as a function of wavelength. Photochem Photobiol 29:735–743

    Google Scholar 

  15. Hodde KC, Miodonski A, Bakker C, Veltman WAM (1977) Scanning electron microscopy of microcorrosion casts with special attention on arterio-venous differences and application to the rat's cochlea. Scan Electron Microsc 2:477–484

    Google Scholar 

  16. Howell WL, Rapp LM, Williams TP (1982) Distribution of melanosomes across the retinal pigment epithelium of a hooded rat: implications for light damage. Invest Ophthalmol Vis Sci 22: 139–144

    Google Scholar 

  17. Kuwabara T, Cogan DG (1960) Studies of retinal vascular patterns. Arch Opthalmol 64:124/904–131/911

    Google Scholar 

  18. Kuwabara T, Gorn RA (1968) Retinal damage by visible light. An electron microscopic study. Arch Ophthalmol 79:69–78

    Google Scholar 

  19. Lai Y-L, Jacoby RO, Jonas AM (1978) Age-related and light-associated retinal changes in Fischer-rats. Invest Ophthalmol Vis Sci 17:634–638

    Google Scholar 

  20. Lanum J (1978) The damaging effects of light on the retina. Empirical findings, theoretical and practical implications. Surv Ophthalmol 22:221–249

    Google Scholar 

  21. Lawwill R, Crockett S, Currier G (1977) Retinal damage secondary to chronic light exposure, thresholds and mechanisms. Doc Ophthalmol 44:379–402

    Google Scholar 

  22. Lincoff H, Kreissig I (1979) Cryogenic and thermal effects on the retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The retinal pigment epithelium. Harvard University Press, Cambridge, Mass, London, pp 314–333

    Google Scholar 

  23. Marshall J, Hamilton AM, Bird AC (1975) Histopathology of Ruby and Argon laser lesion in monkey and human retina. Br J Ophthalmol 59:610–630

    Google Scholar 

  24. Miodonski A, Hodde KC, Bakker C (1976) Rasterelektronenmikroskopie von Plastik-Korrosions-Präparaten: Morphologische Unterschiede zwischen Arterien und Venen. Beitr Elektronenmikrosk Direktabb Oberfl 9:435–442

    Google Scholar 

  25. Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:450–473

    Google Scholar 

  26. Noell WK (1980) There are different kinds of retinal light damage in the rat. In: Williams TP, Baker BN (eds) Effects of constant light. Plenum Press, New York London, pp 3–28

    Google Scholar 

  27. O'Steen WK, Shear CR, Anderson KV (1972) Retinal damage after prolonged exposure to visible light: a light and electron microscopic study. Am J Anat 134:5–22

    Google Scholar 

  28. Reynolds ES (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  29. Sachs L (1974) Angewandte Statistik, 4th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  30. Sarks SH (1973) New vessel formation beneath the retinal pigment epithelium in senile eyes. Br J Ophthalmol 57:951–965

    Google Scholar 

  31. Spitznas M, Bornfeld N (1978) The architecture of the most peripheral retinal vessels. Graefe's Arch Clin Exp Ophthalmol 208:125–133

    Google Scholar 

  32. Tanaka K, Naguro T (1981) High resolution scanning electron microscopy of cell organelles by a new specimen preparation method. Biomed Res 2:63–70

    Google Scholar 

  33. Teeters VW, Brid AC (1973) A clinical study of the vascularity of senile disciform macular degeneration. Am J Ophthalmol 75:53–65

    Google Scholar 

  34. Ts'o MOM, Wallow IHL, Powell JO (1973) Differential susceptibility of rod and cone cells to Argon laser. Arch Ophthalmol 89:228–234

    Google Scholar 

  35. Verhoeff FH, Grossman HP (1937) Pathogenesis of disciform degeneration of the macula. Arch Ophthalmol 18:561–585

    Google Scholar 

  36. Wallow IHI, Engerman RL (1977) Permeability and patency of retinal blood vessels in experimental diabetes. Invest Ophthalmol Vis Sci 16:447–461

    Google Scholar 

  37. Wallow IHI, Geldner PS (1980) Endothelial fenestrae in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 19:1176–1183

    Google Scholar 

  38. Weiter JJ, Zuckerman R (1980) The influence of the photoreceptor-RPE complex on the inner retina. An explanation for the beneficial effects of photo-coagulation. Ophthalmology 11:1133–1139

    Google Scholar 

  39. Weizenbaum F, Colavita F (1975) Behavioral and electrophysiological changes in visual sensitivity following prolonged exposure to constant light. Exp Neurol 48:440–446

    Google Scholar 

  40. Williams TP, Baker BN (1980) The effect of constant light. Plenum Press, New York London

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Koch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koch, F., El-Hifnawi, E.S. & Spitznas, M. The effect of long-term irradiation with fluorescent light on the rat fundus. Graefe's Arch Clin Exp Ophthalmol 225, 226–234 (1987). https://doi.org/10.1007/BF02175454

Download citation

Keywords

  • Scanning Electron Microscopy
  • Transmission Electron Microscopy
  • Retina
  • Trypsin
  • Retinal Pigment Epithelium