Skip to main content
Log in

The effect of workstation technology on methods in drug design and discovery

  • Perspectives Part III. Hardware And Software
  • Published:
Perspectives in Drug Discovery and Design

Summary

The last two decades have seen the birth, emergence and acceptance of the field of computational drug design and discovery. In the early days of this period, computer-aided drug design was performed on mainframe or supercomputers by specialists. Modern-day workstations provide access to a large palette of powerful software tools to a wide audience of computational, medicinal and bioorganic chemists. In this paper we review the trends in computer hardware that have led to powerful computer systems, including the evolution of workstations from the microprocessors used in personal computers and the gradual development of workstation networks. We predict how advances in workstation technology will affect computational drug design and discovery in the future. We also outline some challenges that need to be faced to make workstation-based computational chemistry even more useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam, P.Y.-S., Eyermann, C.J., Hodge, C.N., Jadhav, P.K., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, M.M., Wong, N.Y., Chang, C.H., Weber, P.C., Jackson, D.A., Sharpe, T.R. and Erickson-Viitanen, S.K., Abstracts of Papers of the American Chemical Society, 205 (1993) P96-MEDI.

  2. Lam, P.Y.-S., Eyermann, C.J., Hodge, C.N., Jadhav, P.K. and Delucca, G.V., PCT Patent Application, WO9307128, 1993.

  3. Ring, C.S., Sun, E., McKerrow, J.H., Lee, G.K., Rosenthal, P.J., Kuntz, I.D. and Cohen, F.E., Proc. Natl. Acad. Sci. USA, 90 (1993) 3583.

    Google Scholar 

  4. Itzstein, M.V., Wu, W.-Y., Kok, G.B., Pegg, M.S., Dyason, J.C., Jin, B., Phan, T.V., Smythe, M.L., White, H.F., Oliver, S.W., Colman, P.M., Varghese, J.N., Ryan, D.M., Woods, J.M., Bethell, R.C., Hotham, V.J., Cameron, J.M. and Penn, C.R., Nature, 363 (1993) 418.

    Google Scholar 

  5. Webber, S.E., Bleckman, T.M., Attard, J., Deal, J.G., Kathardekar, V., Welsh, K.M., Webber, S., Janson, C.A., Matthews, D.A., Smith, W.W., Freer, S.T., Jordan, S.R., Bacquet, R.J., Howland, E.F.,Booth, C.L.J., Ward, R.W., Hermann, S.M., White, J., Morse, C.A., Hilliard, J.A. and Bartlett, C.A., J. Med. Chem., 36 (1993) 733.

    Google Scholar 

  6. Ripka, W.C., Sipio, W.J. and Blaney, J.M., Lect. Heterocyclic Chem., 9 (1987) S95.

    Google Scholar 

  7. Hartman, G.D., Egbertson, M.S., Halczenko, W., Laswell, W.L., Duggan, M.E., Smith, R.L., Naylor, A.M., Manno, P.D., Lynch, T.J., Zhang, G., Chang, C.T.-C. and Gould, R., J. Med. Chem., 35 (1992) 4640.

    Google Scholar 

  8. Dongarra, J., Linpack Performance Figures, Computer Science Department, University of Tennessee, Knoxville, TN, 1993.

    Google Scholar 

  9. Wasikowski, C. and Klemm, S., Xmol, 1993, Research Equipment, Inc., Minnesota Supercomputer Center, Minneapolis, MN, 1993.

    Google Scholar 

  10. SYBYL, Tripos Associates, St. Louis, 1992.

  11. Daylight Chemical Information Systems, Irvine, 1993.

  12. Express, ParaSoft Sales Corporation, Mission Viejo, 1992.

  13. Linda, Scientific Computing Associates, Inc., New Haven, 1993.

  14. PVM is the result of a government-sponsored parallel computing research project at Oak Ridge National Laboratory, Oak Ridge, TN 37831-6367, and is available, with certain restrictions, free of charge by anonymous ftp.

  15. P4 is available, with certain restrictions, free of charge, from Rusty Lusk, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL.

  16. Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 13.

    Google Scholar 

  17. Huang, C.C. Dms is available as part of the UCSF MidasPlus package. University of California, San Francisco, CA, 1992.

    Google Scholar 

  18. Feyereisen, M.W., Kendall, R.A., Nichols, J., Dame, D. and Golab, J.T., J. Comput. Chem., 14 (1993) 818.

    Google Scholar 

  19. McCammon, J.A. and Harvey, S.C., Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  20. Bash, P.A., Singh, U.C., Langridge, R. and Kollman, P.A., Science, 236 (1987) 564.

    Google Scholar 

  21. Cramer III, R.D., Patterson, D.E. and Bunce, J.W., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  22. Martin, Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  23. Dang, L.X., Rice, J.E., Caldwell, J. and Kollman, P.A., J. Am. Chem. Soc., 113 (1991) 2481.

    Google Scholar 

  24. Sprik, M., Klein, M.L. and Watanabe, K., J. Phys. Chem., 94 (1990) 6483.

    Google Scholar 

  25. Madden, P., J. Chem. Phys., 98 (1993) 3275.

    Google Scholar 

  26. Wilson, M. and Madden, P.A., J. Phys. Cond. Matter, 5 (1993) 2687.

    Google Scholar 

  27. Field, M.J., Bash, P.A. and Karplus, M., J. Comput. Chem., 11 (1990) 700.

    Google Scholar 

  28. Gao, J. and Xia, X., Science, 258 (1992) 631.

    Google Scholar 

  29. Car, R. and Parrinello, M., Phys. Rev. Lett., 55 (1985) 2471.

    Google Scholar 

  30. Payne, M.C., Rev. Mod. Phys., 64 (1992) 1045.

    Google Scholar 

  31. Jorgensen, W.L. and Tirado-Rives, J., J. Am. Chem. Soc., 110 (1988) 1657.

    Google Scholar 

  32. Böhm, H.-J., J. Am. Chem. Soc., 115 (1993) 6152.

    Google Scholar 

  33. Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc., 99 (1977) 4899.

    Google Scholar 

  34. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  35. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.

    Google Scholar 

  36. Besler, B.H., Merz Jr., K.M., and Kollman, P.A., J. Comput. Chem., 11 (1990) 431.

    Google Scholar 

  37. Cramer, C.J. and Truhlar, D.G., J. Comput.-Aided Mol. Design, 6 (1992) 629.

    Google Scholar 

  38. Cramer, C.J. and Truhlar, D.G., J. Am. Chem. Soc., 113 (1991) 8305.

    Google Scholar 

  39. Cramer, C.J. and Truhlar, D.G., J. Am. Chem. Soc., 113 (1991) 9901.

    Google Scholar 

  40. Jorgensen, W.L., Acc. Chem. Res., 22 (1989) 184.

    Google Scholar 

  41. DesJarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149.

    Google Scholar 

  42. Blaney, J.M., Wieninger, D. and Dixon, J.S., unpublished work.

  43. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  44. Blaney, J.M., Abstracts of Papers of the American Chemical Society, 202 (1991) P28-CINF.

  45. Bartlett, P.A., Shea, G.T., Telfer, S.J. and Waterman, S., Spec. Publ. Chem., Mol. Recognit.: Chem. Biochem. Probl., 78 (1989) 182.

    Google Scholar 

  46. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  47. Moon, J.B. and Howe, W.J., Tetrahedron Comput. Methodol., 3 (1990) 697.

    Google Scholar 

  48. Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design, 7 (1993) 23.

    Google Scholar 

  49. Spresi, VINITI/ZIC Structural Database, Daylight Chemical Information Systems, Irvine, 1993.

    Google Scholar 

  50. Martin, E., Abstracts of Papers of the American Chemical Society, 206 (1993) P77-COMP.

  51. Simon, R.J., Kania, R.S., Zuckermann, R.N., Huebner, V.D., Jewell, D.A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C.K., Spellmeyer, D.C., Tan, R., Frankel, A.D., Santi, D.V., Cohen, F.E. and Bartlett, P.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 9367.

    Google Scholar 

  52. Haraki, K.S., Sheridan, R.P., Venkataraghavan, R., Dunn, D.A. and McCulloch, R., Tetrahedron Comput. Methodol., 3 (1990) 565.

    Google Scholar 

  53. Clark, M., Cramer III, R.D., Jones, D.M., Patterson, D.E. and Simeroth, P.E., Tetrahedron Comput. Methodol., 3 (1990) 47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spellmeyer, D.C., Swope, W.C. The effect of workstation technology on methods in drug design and discovery. Perspectives in Drug Discovery and Design 1, 359–370 (1993). https://doi.org/10.1007/BF02174535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174535

Key words

Navigation