Accomplishments and challenges in integrating software for computer-aided ligand design in drug discovery

Summary

No one commercial vendor of molecular modeling tools supplies all the capabilities needed for computer-assisted molecular design. Integration of software from different sources provides the user with both unique capabilities and productivity improvements. Recent examples of new capabilities are 3D database searching, automated pharmacophore matching, and computer-assisted de novo design. Productivity enhancements result from storing 3D coordinates in a chemical information database, from using 3D database searching programs and from integrating substructure recognition algorithms into molecular graphics and file format conversion programs. Integration of software is hampered by continual changes in the software platforms and the lack of toolkit programming interfaces to much of the software.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Martin, Y.C., Methods Enzymol., 203 (1991) 587.

    Google Scholar 

  2. 2

    Goodford, P.J., J. Med. Chem., 27 (1984) 557.

    Google Scholar 

  3. 3

    Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., J. Med. Chem., 37 (1994) 1035.

    Google Scholar 

  4. 4

    Fesik, S.W., J. Biomol. NMR, 3 (1993) 261.

    Google Scholar 

  5. 5

    Greer, J., Proteins, 7 (1990) 317.

    Google Scholar 

  6. 6

    Golender, V.E. and Vorpagel, E.R., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 137–149.

    Google Scholar 

  7. 7

    Wermuth, C.-G. and Langer, T., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 117–136.

    Google Scholar 

  8. 8

    Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I. and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  9. 9

    Goodford, P., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  10. 10

    Boobbyer, D.N., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  11. 11

    Wade, R.C., Clark, K.J. and Goodford, P.J., J. Med. Chem., 36 (1993) 140.

    Google Scholar 

  12. 12

    Wade, R.C. and Goodford, P.J., J. Med. Chem., 36 (1993) 148.

    Google Scholar 

  13. 13

    Martin, Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  14. 14

    Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  15. 15

    Martin, Y.C., Tetrahedron Comput. Methodol., 3 (1990) 15.

    Google Scholar 

  16. 16

    Moon, J.B. and Howe, W.J., Tetrahedron Comput. Methodol., 3 (1990) 697.

    Google Scholar 

  17. 17

    Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  18. 18

    Bohacek, R.S. and McMartin, C., J. Med. Chem., 35 (1992) 1671.

    Google Scholar 

  19. 19

    Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  20. 20

    Gillett, V.J., Flanagan, K., Johnson, P.A., Marshall, C., Mata, P., Sike, S. and Stebbings, A.L., Tetrahedron Comput. Methodol., 3 (1990) 681.

    Google Scholar 

  21. 21

    Lewis, R.A. and Dean, P.M., Proc. R. Soc. London Ser. B, 236 (1989) 125.

    Google Scholar 

  22. 22

    Lewis, R.A. and Dean, P.M., Proc. R. Soc. London Ser. B, 236 (1989) 141.

    Google Scholar 

  23. 23

    Tshinke, V. and Cohen, N.C., personal communication, 1992.

  24. 24

    Martin, Y.C., Quantitative Drug Design, Marcel Dekker, New York, NY, 1978.

    Google Scholar 

  25. 25

    Fujita, T., In Jolles, G. and Wolldridge, K.R.H. (Eds.) Drug Design: Fact or Fantasy?, Academic Press, London, 1984, pp. 19–33.

    Google Scholar 

  26. 26

    Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993.

    Google Scholar 

  27. 27

    Hansch, C., Acc. Chem. Res., 26 (1993) 147.

    Google Scholar 

  28. 28

    Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  29. 29

    Cramer III, R.D., dePriest, S.A., Patterson, D.E. and Hecht, P., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 443–485.

    Google Scholar 

  30. 30

    Leo, A.J., Chem. Rev., 93 (1993) 1281.

    Google Scholar 

  31. 31

    Blaney, J.M. and Dixon, J.S., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. V, VCH, New York, NY, 1994, pp. 299–335.

    Google Scholar 

  32. 32

    Martin, Y.C., Rys, J. and Danaher, E.A., unpublished program.

  33. 33

    O'Donnell, T.J. and Olson, A.J., Comput. Graphics, 15 (1981) 133.

    Google Scholar 

  34. 34

    Leo, A.J., Hansch, C. and Weininger, D., MedChem Software, v. 3.52, Pomona College Medicinal Chemistry Project, Claremont, CA.

  35. 35

    Weininger, D. and Weininger, A., J. Chem. Inf. Comput. Sci., 28 (1988) 31.

    Google Scholar 

  36. 36

    Weininger, D., Weininger, A. and Weininger, J.L., J. Chem. Inf. Comput. Sci., 29 (1989) 97.

    Google Scholar 

  37. 37

    Martin, Y.C., Danaher, E.B., May, C.S. and Weininger, D., J. Comput.-Aided Mol. Design, 2 (1988) 15.

    Google Scholar 

  38. 38

    O'Donnell, T.J., Rao, S.N., Koehler, K., Martin, Y.C. and Eccles, B., J. Comput. Chem., 12 (1991) 209.

    Google Scholar 

  39. 39

    Van Drie, J.H., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  40. 40

    Schoenleber, R.W., Kebabian, J.W., Martin, Y.C., DeNinno, M.P., Perner, R.J., Stout, D.M., Hsiao, C.N.W., DiDomenico Jr., S., DeBernardis, J.F., Basha, F.Z., Meyer, M.D. and De, B., US Patent no. 4,963,568, 1990.

  41. 41

    Martin, Y.C. and Van Drie, J.H., In Warr, W. (Ed.) Chemical Structures 2. The International Language of Chemistry, Springer, Berlin, 1993, pp. 315–326.

    Google Scholar 

  42. 42

    CONCORD, Pearlman, R.S., Rusinko III, A., Skell, J.M., Balducci, R. and McGarity, C.M., Tripos Associates, St. Louis, MO, 1988.

  43. 43

    Brint, A.T. and Willett, P., J. Chem. Inf. Comput. Sci., 27 (1987) 152.

    Google Scholar 

  44. 44

    DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 31 (1988) 722.

    Google Scholar 

  45. 45

    Bartlett, P.A., Shea, G.T., Telfer, S.J. and Waterman, S., In Roberts, S.M., Ley, S.V. and Campbell, M.M. (Eds.) Chemical and Biological Problems in Molecular Recognition, Vol. 78, Royal Society of Chemistry, Cambridge, 1989, pp. 182–196.

    Google Scholar 

  46. 46

    Jarvis, R.A. and Patrick, E.A., IEEE Trans. Comput., C-22 (1973) 1025.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, Y.C. Accomplishments and challenges in integrating software for computer-aided ligand design in drug discovery. Perspectives in Drug Discovery and Design 3, 139–150 (1995). https://doi.org/10.1007/BF02174471

Download citation

Keywords

  • Recognition Algorithm
  • Molecular Graphic
  • Software Platform
  • Information Database
  • Unique Capability