Site-directed structure generation by fragment-joining

Summary

Recently, several computer programs for de novo ligand design have been described that construct novel molecules by combining several fragments into one molecule. The present review discusses the advantages and disadvantages of this fragment-based approach to de novo design. The computer program LUDI for automated structure-based ligand design is described in some detail. This program constructs possible new ligands for a given protein of known three-dimensional structure. In addition, LUDI can also be used for 3D database searching. LUDI is based upon rules about energetically favorable nonbonded contact geometries between functional groups of the protein and the ligand which are derived from a statistical analysis of crystal packings of organic molecules. All putative ligands retrieved or constructed by LUDI are scored by a simple scoring function that was fitted to experimentally determined binding constants of protein-ligand complexes. LUDI is a fast program that is suitable for interactive usage.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Navia, M.A. and Murcko, M.A., Curr. Opin. Struct. Biol., 2 (1992) 202.

    Google Scholar 

  2. 2

    Baldwin, J.J., Ponticello, G.S., Anderson, P.S., Christy, M.E., Murcko, M.A., Randell, W.C., Schwam, H., Sugrue, M.F., Springer, J.P., Gautheron, P., Grove, J., Mallorga, P., Viader, M.-P., McKeever, B.M. and Navia, M.A., J. Med. Chem., 32 (1989) 2510.

    Google Scholar 

  3. 3

    Appelt, K., Bacquet, R.J., Bartlett, C.A., Booth, C.L.J., Freer, S.T., Fuhry, M.A.M., Gehring, M.R., Herrmann, S.M., Howland, E.F., Janson, C.A., Jones, T.R., Kan, C.-C., Kathardekar, V., Lewis, K.K., Marzoni, G.P., Matthews, D.A., Mohr, C., Moomaw, E.W., Morse, C.A., Oatley, S.J., Ogden, R.C., Reddy, M.R., Reich, S.H., Schoettlin, W.S., Smith, W.W., Varney, M.D., Villafranca, J.E., Ward, R.W., Webber, S., Webber, S.E., Welsh, K.M. and White, J., J. Med. Chem., 34 (1991) 1925.

    Google Scholar 

  4. 4

    Varney, M.D., Marzoni, G.P., Palmer, C.L., Deal, J.G., Webber, S., Welsh, K.M., Bacquet, R.J., Bartlett, C.A., Morse, C.A., Booth, C.L.J., Herrmann, S.M., Howland, E.F., Ward, R.W. and White, J., J. Med. Chem., 35 (1992) 663.

    Google Scholar 

  5. 5

    Reich, S.H., Fuhry, M.A.M., Nguyen, D., Pino, M.J., Welsh, K.M., Webber, S., Janson, C.A., Jordan, S.R., Matthews, D.A., Smith, W.W., Bartlett, C.A., Booth, C.L.J., Herrmann, S.M., Howland, E.F., Morse, C.A., Ward, R.W. and White, J., J. Med. Chem., 35 (1992) 847.

    Google Scholar 

  6. 6

    Thompson, W.J., Fitzgerald, P.M.D., Holloway, M.K., Emini, E.A., Darke, P.L., McKeever, B.M., Schleif, W.A., Quintero, J.C., Zugay, J.A., Tucker, T.J., Schwering, J.E., Homnick, C.F., Nunberg, J., Springer, J.P. and Huff, J.R., J. Med. Chem., 35 (1992) 1685.

    Google Scholar 

  7. 7

    Lam, P.Y.S., Jadhav, P.K., Eyermann, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.L., Rayner, M.M., Wong, Y.N., Chang, C.H., Weber, P.C., Jackson, D.A., Sharpe, T.R. and Erickson-Viitanen, S., Science, 263 (1994) 380.

    Google Scholar 

  8. 8

    von Itzstein, M., Wu, W.Y. and Kok, G.B., Nature, 363 (1993) 418.

    Google Scholar 

  9. 9

    Mack, H., Pfeiffer, Th., Hornberger, W., Böhm, H.-J. and Höffken, H.W., J. Enzyme Inhib., 9 (1995) 73.

    Google Scholar 

  10. 10

    Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  11. 11

    Boobyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  12. 12

    Miranker, A. and Karplus, M., Protein Struct. Funct. Genet., 11 (1991) 29.

    Google Scholar 

  13. 13

    Cohen, N.C., Blaney, J.M., Humblet, C., Gund, P. and Barry, D.C., J. Med. Chem., 33 (1990) 883.

    Google Scholar 

  14. 14

    Martin, Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  15. 15

    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, T., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  16. 16

    Nishibata, Y. and Itai, A., Tetrahedron, 47 (1991) 8985.

    Google Scholar 

  17. 17

    Nishibata, Y. and Itai, A., J. Med. Chem., 36 (1993) 2921.

    Google Scholar 

  18. 18

    Bohacek, R.S. and McMartin, C., J. Am. Chem. Soc., 116 (1994) 5560.

    Google Scholar 

  19. 19

    Gehlhaar, D.K., Moerder, K.E., Zichi, D., Sherman, C.J., Ogden, R.C. and Freer, S.T., J. Med. Chem., 38 (1995) 466.

    Google Scholar 

  20. 20

    Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 11 (1991) 314.

    Google Scholar 

  21. 21

    Tschinke, V. and Cohen, N.C., J. Med. Chem., 36 (1993) 3863.

    Google Scholar 

  22. 22

    Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  23. 23

    Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Protein Struct. Funct. Genet., 19 (1994) 199.

    Google Scholar 

  24. 24

    Caflish, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142.

    Google Scholar 

  25. 25

    Lewis, R.A., J. Mol. Graphics, 10 (1992) 66.

    Google Scholar 

  26. 26

    Gillet, V.J., Johnson, A.P., Mata, P. and Sike, S., Tetrahedron Comput. Methodol., 3 (1990) 681.

    Google Scholar 

  27. 27

    Gillet, V., Johnson, P., Mata, P., Sike, S. and Williams, P., J. Comput.-Aided Mol. Design, 7 (1993) 127.

    Google Scholar 

  28. 28

    Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design, 7 (1993) 23.

    Google Scholar 

  29. 29

    Bartlett, P.A., Shea, G.T., Telfer, S.J., Waterman, S. and Roberts, S.M. (Eds.) Molecular Recognition: Chemical and Biological Problems, Royal Society of London, London, 1989, p. 182.

    Google Scholar 

  30. 30

    Pearlman, D.A. and Murcko, M.A., J. Comput. Chem., 14 (1993) 1184.

    Google Scholar 

  31. 31

    Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 125.

    Google Scholar 

  32. 32

    Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 141.

    Google Scholar 

  33. 33

    Chau, P.L. and Dean, P.M., J. Comput.-Aided Mol. Design, 6 (1992) 385.

    Google Scholar 

  34. 34

    Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  35. 35

    VanDrie, J., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  36. 36

    Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  37. 37

    Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  38. 38

    Böhm, H.-J., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 386.

    Google Scholar 

  39. 39

    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  40. 40

    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 623.

    Google Scholar 

  41. 41

    Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink-Peters, T., Kennard, O., Motherwell, W.D.S., Rodgers, J.R. and Watson, D.G., Acta Crystallogr., B35 (1979) 2331.

    Google Scholar 

  42. 42

    Scheiner, S., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 2, VCH Publishers, New York, NY, 1991, p. 165 and references cited therein.

    Google Scholar 

  43. 43

    Allen, F.H., Kennard, O. and Taylor, R., Acc. Chem. Res., 16 (1983) 146.

    Google Scholar 

  44. 44

    Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.

    Google Scholar 

  45. 45

    Böhm, H.-J., manuscript in preparation.

  46. 46

    Fersht, A.R., Shi, J.P., Knill-Jones, J., Lowe, D.M., Wilkinson, A.J., Blow, D.M., Brick, P., Carter, P., Waye, M.M.Y. and Winter, G., Nature, 314 (1985) 235.

    Google Scholar 

  47. 47

    Richards, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

  48. 48

    Chothia, C., Nature, 254 (1975) 304.

    Google Scholar 

  49. 49

    Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B., Biochemistry, 30 (1991) 9686.

    Google Scholar 

  50. 50

    Marquart, M., Walter, J., Deisenhofer, J., Bode, W. and Huber, R., Acta Crystallogr., B39 (1983) 480.

    Google Scholar 

  51. 51

    Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Protein Struct. Funct. Genet., 4 (1988) 31.

    Google Scholar 

  52. 52

    Mares-Guia, M. and Shaw, E., J. Biol. Chem., 240 (1965) 1579.

    Google Scholar 

  53. 53

    Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B.H. and Wlodawer, S., Science, 246 (1989) 1149.

    Google Scholar 

  54. 54

    deSolms, S.J., Giuliani, E.A., Guare, J.P., Vacca, J.P., Sanders, W.M., Graham, S.L., Wiggins, J.M., Darke, P.L., Sigal, I.S., Zugay, J.A., Emini, E.A., Schleif, W.A., Quintero, J.C., Anderson, P.S. and Huff, J.R., J. Med. Chem., 34 (1991) 2852.

    Google Scholar 

  55. 55

    The Fine Chemicals Directory (FCD) and the Available Chemicals Directory (ACD) are distributed by Molecular Design Ltd., San Leandro, CA.

  56. 56

    Program CONCORD is distributed by Tripos Associates, St. Louis, MO.

  57. 57

    Sadowski, J., Rudolph, C. and Gasteiger, J., Tetrahedron Comput. Methodol., 3 (1990) 537.

    Google Scholar 

  58. 58

    Recanatini, M., Klein, T., Yang, C.Z., McClarin, J., Langridge, R. and Hansch, C., Mol. Pharmacol., 29 (1986) 436.

    Google Scholar 

  59. 59

    Green, N.M., Adv. Protein Chem., 29 (1975) 85.

    Google Scholar 

  60. 60

    Pisabarro, M.T., Ortiz, A.R., Palomar, A., Cabre, F., Garcia, L., Wade, R.C., Gago, F., Mauleon, D. and Carganico, G., J. Med. Chem., 37 (1994) 337.

    Google Scholar 

  61. 61

    Banner, D.W. and Hadvary, P., J. Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  62. 62

    Sali, A., Veerapandian, B., Cooper, J.B., Moss, J.B., Hofmann, T. and Blundell, T.L., Protein Struct. Funct. Genet., 12 (1992) 158.

    Google Scholar 

  63. 63

    Rahuel, J., Priestle, J.P. and Grütter, M.G., J. Struct. Biol., 107 (1991) 227.

    Google Scholar 

  64. 64

    Wierenga, R.K., Noble, M.E.M. and Davenport, R.C., J. Mol. Biol., 224 (1992) 1115.

    Google Scholar 

  65. 65

    LUDI is available from Biosym Technologies, San Diego, CA.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Böhm, HJ. Site-directed structure generation by fragment-joining. Perspectives in Drug Discovery and Design 3, 21–33 (1995). https://doi.org/10.1007/BF02174465

Download citation

Keywords

  • Computer Program
  • Structure Generation
  • Organic Molecule
  • Present Review
  • Binding Constant