Skip to main content
Log in

Automated chemical hypothesis generation and database searching with Catalyst®

  • Published:
Perspectives in Drug Discovery and Design

Summary

Simulation technology is a time-tested approach for lowering research costs in industries where trial-and-error techniques dominate. Research in pharmaceutical drug discovery is such an industry, but development of suitable simulation methods has lagged behind because of the difficulty in effectively modeling molecular behavior. The Catalyst program represents a new approach that focuses on modeling the drug-receptor interaction from the point of view of the receptor, using information derived only from the drug. Molecules are described as collections of chemical functions arranged in three-dimensional space. Conformational flexibility is modeled by creating multiple conformers, judiciously prepared to emphasize representative coverage over a specified energy range. A training set, consisting of approximately 20 molecules ranging in activity over four orders of magnitude, becomes the information set used to derive a hypothesis, a minimal collection of chemical features common across the set that explains the observed activity. A hypothesis can serve as an electronic query for searching 3D databases of structures for compounds that, fitting its constraints, are potential leads for further development. The method was applied in different ways to four problems in medicinal chemistry, i.e., angiotensin converting enzyme (ACE), protein farnesyl transferase (PFT), human immunodeficiency virus (HIV) protease (PHIV), and HIV reverse transcriptase (RTHIV) inhibition. From a training set of 20 small peptides with ACE inhibitory activity, a five-featured hypothesis was found that is predictive for inhibitors outside of the set. From a training set of 20 CaaX box tetrapeptides, a hypothesis for PFT inhibition was computed that explains the activities of non-peptide inhibitors reasonably well. Representative compounds from three structurally different classes of RTHIV inhibitors were used to generate a simple four-featured hypothesis that suggests how all three classes could bind to the same receptor. Finally, an enzyme-bound conformation of SB-203386, an inhibitor of PHIV, determined by X-ray crystallography was used to manually construct a hypothesis. This was then used to search 3D databases for structures of interest as inhibitors of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneider, H.J., Angew. Chem. Int. Ed. Engl., 30 (1991) 1417.

    Google Scholar 

  2. Greene, J., Kahn, S., Savoj, H., Sprague, P. and Teig, S., J. Chem. Inf. Comput. Sci., 34 (1994) 1297.

    Google Scholar 

  3. Smellie, A., Teig, S.L. and Towbin, P., J. Comput. Chem., 16 (1995) 171.

    Google Scholar 

  4. Smellie, A., Kahn, S.D. and Teig, S.L., J. Chem. Inf. Comput. Sci., 35 (1995) 285.

    Google Scholar 

  5. Smellie, A., Kahn, S.D. and Teig, S.L., J. Chem. Inf. Comput. Sci., 35 (1995) 295.

    Google Scholar 

  6. Brookhaven National Laboratory, Chemistry Department, Upton, NY.

  7. Quanta v. 4.1, Molecular Simulations Inc., Burlington, MA.

  8. The Derwent Standard Drug File in Catalyst format is under development at MSI Inc., Burlington, MA.

  9. Ferreira, S.H., Bartelt, D.C. and Greene, L.J., Biochemistry, 9 (1970) 2583.

    Google Scholar 

  10. Cheung, H.-S., Wang, F.-L., Ondetti, M.A., Sabo, E.F. and Cushman, D.W., J. Biol. Chem., 255 (1980) 401.

    Google Scholar 

  11. Thorsett, E.D., Harris, E.E., Aster, S., Peterson, E.R., Taub, D., Patchett, A., Ulm, E.H. and Vassil, T.C., Biochem. Biophys. Res. Commun., 111 (1983) 166.

    Google Scholar 

  12. Cushman, D.W., Cheung, H.-S. and Ondetti, M.A., Biochemistry, 16 (1977) 5484.

    Google Scholar 

  13. Patchett, A.A., Harris, E., Tristram, E.W., Wyvratt, M.J., Wu, M.T., Taub, D., Peterson, E.R., Ikeler, T.J., Ten Broeke, J., Payne, L.G., Ondeyka, D.L., Thorsett, E.D., Greenelee, W.J., Lohr, N.S., Hoffsommer, R.D., Joshua, H., Ruyle, W.V., Rothrock, J.W., Aster, S.D., Maycock, A.L., Robinson, F.M., Hirschmann, R., Sweet, C.S., Ulm, E.H., Gross, D.M., Vassil, T.C. and Stone, C.A., Nature, 288 (1980) 280.

    Google Scholar 

  14. Goldstein, J.L. and Brown, M.S., Nature, 343 (1990) 425.

    Google Scholar 

  15. Barbacid, M., Annu. Rev. Biochem., 56 (1987) 779.

    Google Scholar 

  16. Moores, S.L., Schaber, M.D., Mosser, S.D., Rands, E., O'Hara, M.B., Garsky, V.M., Marshall, M.S., Pompliano, D.L. and Gibbs, J.B., J. Biol. Chem., 266 (1991) 14603.

    Google Scholar 

  17. Brown, M.S., Goldstein, J.L., Paris, K.J., Burnier, J.P. and Marsters Jr., J.C., Proc. Natl. Acad. Sci. USA, 89 (1992) 8313.

    Google Scholar 

  18. Reiss, Y., Stradley, S.J., Gierasch, L.M., Brown, M.S. and Goldstein, J.L., Proc. Natl. Acad. Sci. USA, 88 (1991) 732.

    Google Scholar 

  19. Kohl, N.E., Mosser, S.D., deSolms, S.J., Giuliani, E.A., Pompliano, D.L., Graham, S.L., Smith, R.L., Scolnick, E.M., Oliff, A. and Gibbs, J.B., Science, 260 (1993) 1934.

    Google Scholar 

  20. James, G.L., Goldstein, J.L., Brown, M.S., Rawson, T.E., Somers, T.C., McDowell, R.S., Crowley, C.W., Lucas, B.K., Levinson, A.D. and Marsters Jr., J.C., Science, 260 (1993) 1937.

    Google Scholar 

  21. Barrish, J.C. and Zahler, R., In Bristol, J.A. (Ed.) Annual Reports in Medicinal Chemistry, Vol. 28, Academic Press, San Diego, CA, 1986, p. 131.

    Google Scholar 

  22. Goldman, M.E., Nunberg, J.H., O'Brien, J.A., Quintero, J.C., Schleif, W.A., Freund, K.F., Gaul, S.L., Saari, W.S., Wai, J.S., Hoffman, J.M., Anderson, P.S., Hupe, D.J., Emini, E.A. and Stern, A.M., Proc. Natl. Acad. Sci. USA, 88 (1991) 6863.

    Google Scholar 

  23. Hargrave, K.D., Proudfoot, J.R., Grozinger, K.G., Cullen, E., Kapadia, S.R., Patel, U.R., Fuchs, V.U., Mauldin, S.C., Vitous, J., Behnke, M.L., Klunder, J.M., Kollol, P., Skiles, J.W., McNeil, D.W., Rose, J.M., Chow, G.C., Skoog, M.T., Wu, J.C., Schmidt, G., Engel, W.W., Eberlein, W.G., Saboe, T.D., Campbell, S.J., Rosenthal, A.S. and Adams, J., J. Med. Chem., 34 (1991) 2231.

    Google Scholar 

  24. Saari, W.S., Hoffman, J.M., Wai, J.S., Fisher, T.E., Rooney, C.S., Smith, A.M., Thomas, C.M., Goldman, M.E., O'Brien, J.A., Nunberg, J.H., Quintero, J.C., Schleif, W.A., Emini, E.A., Stern, A.M. and Anderson, P.S., J. Med. Chem., 34 (1991) 2925.

    Google Scholar 

  25. Mertens, A., Zilch, H., Konig, B., Schafer, W., Poll, T., Kampe, W., Seidel, H., Leser, U. and Leinert, H., J. Med. Chem., 36 (1993) 2526.

    Google Scholar 

  26. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. and Steitz, T.A., Science, 256 (1992) 1783.

    Google Scholar 

  27. Martin, Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  28. Berezin, S., Greene, J., Kahn, S., Ku, S. and Teig, S., CHM: A new chemically expressive database query language, Noordwijkerhout-Camerino Medicinal Chemistry Symposium, Noordwijkerhout, 1993.

  29. ORION v. 4, release 5, Xidac Inc., Palo Alto, CA.

  30. The National Cancer Institute database is available in Catalyst format from Molecular Simulations Inc., Burlington, MA.

  31. Abdel-Meguid, S.S., Metcalf, B.W., Carr, T.J., Demarsh, P., Desjarlais, R.L., Fisher, S., Green, D.A., Ivanoff, L., Lambert, D.M., Murthy, K.H.M., Petteway Jr., S.R., Pitts, W.J., Tomaszek Jr., T.A., Winborne, E., Zhao, B., Dreyer, G.B. and Meek, T.D., Protein Data Bank entry 1sbg.pdb.

  32. Application note ‘Building a hypothesis for angiotensin II antagonism’, BioCAD Corp., Sunnyvale, CA, 1994.

  33. Mantlo, N.B., Chakravarty, P.K., Ondeyka, D.L., Siegl, P.K.S., Chang, R.S., Lotti, V.J., Faust, K.A., Chen, T.-B., Schorn, T.W., Sweet, C.S., Emmert, S.E., Patchett, A.A. and Greenlee, W.J., J. Med. Chem., 34 (1991) 2919.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprague, P.W. Automated chemical hypothesis generation and database searching with Catalyst® . Perspectives in Drug Discovery and Design 3, 1–20 (1995). https://doi.org/10.1007/BF02174464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174464

Keywords

Navigation