Skip to main content
Log in

TheTy1-copia group retrotransposons inVicia species: copy number, sequence heterogeneity and chromosomal localisation

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

We present an in-depth study of theTy1-copia group of retrotransposons within the plant genusVicia, which contains species with widely differing genome sizes. We have compared the numbers and sequence heterogeneities of these genetic elements in three diploidVicia species chosen to represent large (V. faba, 1C=13.3 pg), medium (V. melanops, 1C=11.5 pg) and small (V. sativa, 1C=2.3 pg) genomes within the genus. The copy numbers of the retrotransposons are all high but vary greatly, withV. faba containing approximately 106 copies,V. melanops about 1000 copies andV. sativa 5000 copies. The degree of sequence heterogeneity ofTy1-copia group elements correlates with their copy number within each genome, but neither heterogeneity nor copy number are related to the genome size of the host. In situ hybridization to metaphase chromosomes shows that the retrotransposons inV. faba are distributed throughout all chromosomes but are much less abundant in certain heterochromatic regions. These results are discussed in the context of plant retrotransposon evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc London B 274:227–274

    Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse-transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Google Scholar 

  • Camirand A, St Pierre B, Martineau C, Brisson N (1990) Occurrence of acopia-like transposable element in one of the introns of the potato starch phosphorylase gene. Mol Gen Genet 224:33–39

    Google Scholar 

  • Carmena M, Gonzalez C (1995) Transposable elements map in a conserved pattern of distribution extending from β-heterochromatin to centromeres in Drosophila. Chromosoma, in press

  • Charlesworth B (1986) Genetic divergence between transposable elements. Genet Res (Camb) 48:111–118

    Google Scholar 

  • Dobel P, Schubert I, Rieger R (1973) Distribution of heterochromatin in a reconstructed karyotype ofVicia faba as identified by banding and DNA late replication patterns. Chromosoma 69:193–209

    Google Scholar 

  • Doolittle RF, Feng D (1990) Nearest neighbour procedure for relating progressively aligned amino acid sequences. Methods Enzymology 183:659–669

    Google Scholar 

  • Emori Y, Shiba T, Kanaya S, Inouye S, Yuki S, Saigo K (1985) Determination of the nucleotide sequences ofcopia andcopia-related RNA inDrosophila virus-like particles. Nature 315:773–776

    Google Scholar 

  • Feng DF, Doolittle RF (1990) Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183:375–387

    Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Google Scholar 

  • Flavell AF, Smith D, Kumar A (1992a)Copia-Ty family retrotransposon heterogeneity in plants. Mol Gen Genet 231:233–242

    Google Scholar 

  • Flavell AF, Dumbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992b)Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Google Scholar 

  • Flavell AF, Pearce SR, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Devel 4:838–844

    Google Scholar 

  • Fuchs J, Pich U, Meister A, Schubert I (1994) Differentiation of field bean heterochromatin by in situ hybridization with a repeatedFokI sequence. Chromsome Res 2:25–28

    Google Scholar 

  • Grandbastien M-A (1992) Retroelements in higher plants. Trends Genet 8:103–108

    Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989)Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Google Scholar 

  • Hirochika H, Hirochika R (1993)Ty1-copia retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68:35–46

    Google Scholar 

  • Hirochika H, Fukuchi A, Kikuchi F (1992) Retrotransposon families in rice. Mol Gen Genet 233:209–216

    Google Scholar 

  • Joseph JL, Sentry JW, Smyth DR (1990) Interspecies distribution of abundant DNA sequences inLilium. J Mol Evol 30:146–154

    Google Scholar 

  • Konieczny A, Voytas DF, Cummings MP, Ausubel FM (1991) A superfamily ofArabidopsis thaliana retrotransposons. Genetics 127:801–809

    Google Scholar 

  • Kononowicz AK (1986) Cytofluorometric analysis of changes of heterochromatin fraction during differentiation of root cells in two subspecies ofVicia faba. Biol zbl 105:69–83

    Google Scholar 

  • Leeton PJ, Smyth DR (1993) An abundant LINE-like element amplified in the genome ofLilium speciosum. Mol Gen Genet 237:97–104

    Google Scholar 

  • Lindauer A, Frazer D, Bruderlein M, Schmitt R (1993) Reverse transcriptase families and acopia-like retrotransposon in the green algaVolvox carteri. FEBS Lett 319:261–266

    Google Scholar 

  • Mannienen I, Schulman AH (1993)Bare-1, acopia-like retroelement in barley (Hordeum vulgare). Plant Mol Biol 22:829–864

    Google Scholar 

  • Maxted N (1993) A phenetic investigation ofVicia L. subgenusVicia (Leguminosae,Viciae) Bot J Linnean Soc 111:155–182

    Google Scholar 

  • McClintock B (1951) Chromosomal organisation and genic expression. Cold Spring Harbor Symp Quant Biol 16:13–47

    Google Scholar 

  • Moore G, Lucas H, Batty N, Flavell RB (1991a) A family of retrotransposons and associated genomic variation in wheat. Genomics 10:461–468

    Google Scholar 

  • Moore G, Cheung W, Schwarzacher T, Flavell RB (1991b)Bis 1, a major component of the cereal genome and a tool for studying genomic organisation. Genomics 10:469–476

    Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of theDrosophila transposable elementcopia: homology betweencopia and retroviral proteins. Mol Cell Biol 5:1630–1638

    Google Scholar 

  • Ramsay G (1984) C-banding inVicia species. In: Chapman GP, Tarawali SA (eds) Systems for cytogenetic analysis inVicia faba L. Nijhoff/Junk, Dordrecht, The Netherlands, pp 28–39

  • Rowland RE (1981) Chromosome banding and heterochromatin inVicia faba. Theor Appl Genet 60:277–280

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schmidt T, Kubis S, Heslop-Harrison JS (1995) Analysis and chromosomal localisation of retrotransposons in sugarbeet (Beta vulgaris L.): LINEs andTy1-copia-like elements as major components of the genome. Chromosome Res 3:335–345

    Google Scholar 

  • Schwarzacher T, Leitch AR, Heslop-Harrison JS (1994) DNA in situ hybridization-methods for light microscopy. In: Harris N, Oparka KJ (eds) Plant cell biology: a practical approach. Oxford University Press, Oxford, pp 127–155

    Google Scholar 

  • Sentry JW, Smyth DR (1989) An element with long terminal repeats and its variant arrangements in the genome ofLilium henryi. Mol Gen Genet 215:349–354

    Google Scholar 

  • Smyth DR (1993) Plant retrotransposons. In: Verma DPS (ed) Control of gene expression. CRC Press, Baton Range, pp 1–15

    Google Scholar 

  • Vanderwiel PL, Voytas D, Wendel JF (1993)copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.) J Mol Evol 36:429–447

    Google Scholar 

  • Varmus H, Brown P (1989) In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 53–108

    Google Scholar 

  • Vosa GC, Marchi P (1972) On the quinacrine fluorescence and Giemsa staining patterns of chromosomes ofVicia faba. Giorn Bot Ital 106:151–159

    Google Scholar 

  • Voytas DF, Ausubel FM (1988) Acopia-like transposable element family inArabidopsis thaliana. Nature 336:342–244

    Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992)copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Google Scholar 

  • White SE, Hebara L, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role forcopia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, S.R., Li, D., Flavell, A.J. et al. TheTy1-copia group retrotransposons inVicia species: copy number, sequence heterogeneity and chromosomal localisation. Molec. Gen. Genet. 250, 305–315 (1996). https://doi.org/10.1007/BF02174388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174388

Key words

Navigation