Journal of Statistical Physics

, Volume 85, Issue 3–4, pp 471–488 | Cite as

Effect of temperature on polaronic and bipolaronic structures of the adiabatic Holstein model

  • C. Baesens
  • R. S. MacKay


It is proved that the polaronic and bipolaronic structures found in the adiabatic Holstein model at large electron-phonon coupling by Aubry, Abramovici, and Raimbault survive under connection of the electrons to a low-temperature heat bath, uniformly in the size of the system. Bounds are computed for one-dimensional nearest neighbor chains, and some sample solutions are continued numerically.

Key Words

Electron-phonon interaction temperature polaron Holstein model bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Aubry, Bipolaronic charge density waves and polaronic spin density waves in the Holstein-Hubbard model, in Proceedings ECRYS-93 (Carry-le-Rouet, France, June 1993),J. Phys. IV Coll. C2 (Paris)3:349–355 (1993).Google Scholar
  2. 2.
    S. Aubry, G. Abramovici, and J. L. Raimbault, Chaotic polaronic and bipolaronic states in the adiabatic Holstein model,J. Stat. Phys. 67:675–780 (1992).CrossRefGoogle Scholar
  3. 3.
    C. Baesens and R. S. MacKay, Improved proof of existence of chaotic polaronic and bipolaronic states for the adiabatic Holstein model and generalisations,Nonlinearity 7:59–84 (1994).CrossRefGoogle Scholar
  4. 4.
    V. Bach, and E. H. Lieb, and J. P. Solovej, Generalized Hartree-Fock theory and the Hubbard model,J. Stat. Phys. 76:3–89 (1994).CrossRefGoogle Scholar
  5. 5.
    R. Balescu,Equilibrium and Non-equilibrium Statistical Mechanics (Wiley, New York 1975).Google Scholar
  6. 6.
    T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order,Physica A 138:320–358 (1986).Google Scholar
  7. 7.
    J. L. Lebowitz and N. Macris, Low temperature phases of itinerant fermions interacting with classical phonons: the Static Holstein model,J. Stat. Phys. 76:91–123 (1994).CrossRefGoogle Scholar
  8. 8.
    R. S. MacKay and C. Baesens, A new paradigm in quantum chaos: Aubry's theory of equilibrium states for the adiabatic Holstein model, inQuantum Chaos, G. Casati, I. Guarneri, and U. Smilansky, eds. (North-Holland, Amsterdam, 1993), pp. 51–75.Google Scholar
  9. 9.
    M. Reed and B. Simon,Functional Analysis (Academic Press, New York, 1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • C. Baesens
    • 1
  • R. S. MacKay
    • 1
  1. 1.DAMTPCambridgeUK

Personalised recommendations