Advertisement

Journal of Statistical Physics

, Volume 85, Issue 3–4, pp 363–381 | Cite as

Two-dimensional oriented self-avoiding walks with parallel contacts

  • G. T. Barkema
  • S. Flesia
Articles

Abstract

Oriented self-avoiding walks (OSAWs) on a square lattice are studied, with binding energies between steps that are oriented parallel across a face of the lattice. By means of exact enumeration and Monte Carlo simulation, we reconstruct the shape of the partition function and show that this system features of first-order phase transition from a free phase to a tight-spiral phase atΒ s =log(μ), where μ-2.638 is the growth constant for SAWs. With Monte Carlo simulations we show that parallel contacts happen predominantly between a step close to the end of the OSAW and another step nearby; this appears to cause the expected number of parallel contacts to saturate at large lengths of the OSAW.

Key Words

Self-avoiding walks oriented walks collapse spiral walks Monte Carlo exact enumeration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Cardy,Nucl. Phys. B 419:411 (1994).CrossRefGoogle Scholar
  2. 2.
    D. Bennett-Wood, J. L. Cardy, S. Flesia, A. J. Guttmann, and A. L. Owczarek,J. Phys. A 28:5143 (1995).Google Scholar
  3. 3.
    S. Flesia,Europhys. Lett. 32:149–154 (1995).Google Scholar
  4. 4.
    W. M. Koo,J. Stat. Phys. 81:561 (1995).Google Scholar
  5. 5.
    N. Madras and A. Sokal,J. Stat. Phys. 56:109 (1988).CrossRefGoogle Scholar
  6. 6.
    B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982).Google Scholar
  7. 7.
    A. Conway, I. G. Enting and A. J. Guttmann,J. Phys. A. 26:1519 (1993).Google Scholar
  8. 8.
    C. N. Yang and T. D. Lee,Phys. Rev. 87:404 (1952).CrossRefGoogle Scholar
  9. 9.
    T. D. Lee and C. N. Yang,Phys. Rev. 87:410 (1952).CrossRefGoogle Scholar
  10. 10.
    D. Zhao and T. Lookman,J. Phys. A 26:1067–1076 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • G. T. Barkema
    • 1
  • S. Flesia
    • 2
    • 3
  1. 1.Institute for Advanced StudyPrinceton
  2. 2.Theoretical PhysicsUniversity of OxfordOxfordUK
  3. 3.Department of MathematicsImperial CollegeLondonUK

Personalised recommendations