Skip to main content
Log in

Molecular analysis of thescrA andscrB genes fromKlebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme IIScr of the phosphotransferase system and a sucrose-6-phosphate invertase

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

TheKlebsiella pneumoniae genesscrA andscrB are indispensable for sucrose (Scr) utilisation. GenescrA codes for an Enzyme IIScr (IIScr) transport protein of the phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system (PTS), whilescrB encodes a sucrose 6-phosphate specific invertase. A 3.7 kbscrAB DNA fragment has been cloned fromK. pneumoniae and expressed inEscherichia coli. Its nucleotide sequence was determined and the coding regions forscrA (1371 bp) andscrB (1401 bp) were identified by genetic complementation, enzyme activity tests and radiolabelling of the gene products. In addition, the nucleotide sequence of thescrB gene from the conjugative plasmid pUR400 isolated fromSalmonella typhimurium was also determined and errors in the previously published sequence of thescrA gene of pUR400 were corrected. Extensive similarity was found between the sequences of ScrA and other Enzymes II, as well as between the two invertases and other sucrose hydrolysing enzymes. Based on the analysis of seven IIScr proteins, a hypothetical model of the secondary structure of IIScr is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  Google Scholar 

  • Aslanidis C, Schmid K, Schmitt R (1990) Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose inEscherichia coli. J Bacteriol 171:6753–6763

    Google Scholar 

  • Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Wrieden S, Lengeler JW (1991) Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922

    PubMed  Google Scholar 

  • Ausubel FA, Brent R, Kingston RE, Moore DD, Seidmann JG, Smith JA, Struhl K (eds) (1990) Current protocols in molecular biology. Greene Publishing and Wiley-Interscience, New York

    Google Scholar 

  • Blatch GL, Scholle RP, Woods DR (1990) Nucleotide sequence and analysis of theVibrio alginolyticus sucrose uptake-encoding region. Gene 95:17–23

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  • Brückner R, Wagner E, Götz GC (1993) Characterization of a sucrose gene fromStaphylococcus xylosus. J Bacteriol 175:851–857

    PubMed  Google Scholar 

  • Buhr A, Erni B (1993) Membrane topology of the glucose transporter ofEscherichia coli. J Biol Chem 268:11599–11603

    PubMed  Google Scholar 

  • Chen YM, Lee LN, LeBlanc DY (1993) Sequence analysis ofscrA andscrB fromStreptococcus sobriunus 6715. Infect Immun 61:2602–2610

    PubMed  Google Scholar 

  • Ebner R, Lengeler JW (1988) DNA sequence of the genescrA encoding the sucrose transport protein Enzyme IIScr of the phosphotransferase system from enteric bacteria: homology of the Enzyme IIScr and Enzyme IIBgl proteins. Mol Microbiol 2:9–17

    PubMed  Google Scholar 

  • Erni B, Zanolari B, Kocher HP (1987) The mannose permease ofEscherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262:5238–5247

    PubMed  Google Scholar 

  • Ferro-Luzzi Ames G, Nikaido K (1976) Two-dimensional gel electrophoresis of membrane proteins. Biochemistry 15:616–623

    PubMed  Google Scholar 

  • Fouet A, Klier A, Rapoport G (1986) Nucleotide sequence of the sucrase gene ofBacillus subtilis. Gene 45:221–225

    Article  PubMed  Google Scholar 

  • Fouet A, Arnaud M, Klier A, Rapoport G (1987)Bacillus subtilis enzyme II of the phosphotransferase system: expression inEscherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci USA 84:8773–8777

    PubMed  Google Scholar 

  • Gunasekaran P, Karunakaran T, Cami B, Mukundan AG, Preziosi L, Baratti J (1990) Cloning and sequencing of thesacA gene: characterization of a sucrase fromZymomonas mobilis. J Bacteriol 172:6727–6735

    PubMed  Google Scholar 

  • Hardesty C, Ferran C, DiRienzo JM (1991) Plasmid-mediated sucrose metabolism inEscherichia coli: characterization ofscrY, the structural gene for a phosphoenolpyruvate-dependent sucrose phosphotransferase system outer membrane porin. J Bacteriol 173:449–456

    PubMed  Google Scholar 

  • Jahreis K, Lengeler JW (1993) Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Molec Microbiol 9:195–209

    Google Scholar 

  • Klein P, Kahehisa M, DeLisi C (1985) The detection of membrane-spanning proteins. Biochim Biophys Acta 815:468–476

    PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  Google Scholar 

  • Lengeler JW (1990) Molecular analysis of the enzyme II-complexes of the bacterial phosphotransferase system (PTS) as carbohydrate transport systems. Biochim Biophys Acta 1018:155–159

    Google Scholar 

  • Lengeler JW, Lin ECC (1972) Reversal of the mannitol-sorbitol diauxie inEscherichia coli. J Bacterol 112:840–848

    Google Scholar 

  • Lengeler JW, Jahreis K, Wehmeier UF (1994) Enzymes II of the phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 1188:1–28

    PubMed  Google Scholar 

  • Lengeler JW, Titgemeyer F, Vogler AP, Wöhrl B (1990) Structures and homologies of carbohydrate: phosphotransferase system (PTS) proteins. Phil Trans R Soc Lond B 326:489–504

    Google Scholar 

  • Martin I, Débarbouillé M, Ferrari E, Klier A, Rapoport G (1987) Characterization of the levanase gene ofB. subtilis which shows homology to yeast invertase. Mol Gen Genet 208:177–184

    Article  PubMed  Google Scholar 

  • Pas HH, Robillard GT (1988) S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed byE. coli EIIMtl. Biochemistry 27:5520–5525

    Article  PubMed  Google Scholar 

  • Pearson WR, Lipman DL (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Perham RN (1991) Domains, motifs, and linkers in 2-oxo-acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30:8501–8512

    Article  PubMed  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenol-pyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    PubMed  Google Scholar 

  • Rauch PJG, de Vos WM (1992) Transcriptional regulation at the Tn5276-locatedLactococcus lactis sucrose operon and characterization of thesacA gene encoding sucrose-6-phosphate hydrolase. Gene 121:55–61

    PubMed  Google Scholar 

  • Ruijter GJG, Van Meurs G, Verwey MA, Postma PW, van Dam K (1992) Analysis of mutations that uncouple transport from phosphorylation in enzyme IIGle of theEscherichia coli phosphoenolpyruvate-dependent phosphotransferase system. J Bacteriol 174:2843–2850

    PubMed  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sato Y, Kuramitsu HK (1988) Sequence analysis of theStreptococcus mutans scrB gene. Infect Immun 56:1956–1960

    PubMed  Google Scholar 

  • Sato Y, Poy F, Jacobson GR, Kuramitsu HK (1989) Characterization and sequence analysis of thescrA gene encoding enzyme IIScr of theStreptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J Bacteriol 171:263–271

    PubMed  Google Scholar 

  • Schägger H, von Jagow G (1989) A sodium dodecyl sulfate-polyacrylamid gel electrophoresis system suitable for the separation of proteins in the range of 1–100 kDalton. Anal Biochem 166:368–379

    Google Scholar 

  • Schmid K, Schupfner M, Schmitt, R (1982) Plasmid-mediated uptake and metabolism of sucrose byEscherichia coli K-12. J Bacteriol 151:68–76

    PubMed  Google Scholar 

  • Schmid K, Ebner R, Altenbuchner J, Schmitt R, Lengeler JW (1988) Plasmid-mediated sucrose metabolism inEscherichia coli K-12: Mapping of thescr genes of pUR400. Mol Microbiol 2:1–8

    PubMed  Google Scholar 

  • Schmid K, Ebner R, Jahreis K, Lengeler JW, Titgemeyer F (1991) A sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol Microbiol 5:941–950

    PubMed  Google Scholar 

  • Scholle RP, Robb SM, Robb FT, Woods DR (1989) Nucleotide sequence and analysis of theVibrio alginolyticus sucrase gene (scrB). Gene 80:49–56

    Article  PubMed  Google Scholar 

  • Sprenger GA, Lengeler JW (1984)L-sorbose metabolism inKlebsiella pneumoniae and Sor+ derivatives ofEscherichia coli K-12 and chemotaxis towards sorbose. J Bacteriol 157:39–45

    PubMed  Google Scholar 

  • Sprenger GA, Lengeler JW (1988) Analysis of sucrose catabolism inKlebsiella pneumoniae and in Scr+ derivatives ofEscherichia coli K-12. J Gen Microbiol 134:1635–1644

    PubMed  Google Scholar 

  • Sugiyama JE, Mahmoodian S, Jacobson GR (1991) Membrane topology analysis of theEscherichia coli mannitol permease by using a nested-deletion method to createmtlA-phoA fusions. Proc Natl Acad Sci USA 88:9603–9607

    PubMed  Google Scholar 

  • Sutrina SL, Reddy P, Saier MH, Reizer J (1990) The glucose permease ofBacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265:18581–18589

    PubMed  Google Scholar 

  • Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078

    PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    PubMed  Google Scholar 

  • Thompson J, Nguyen NY, Robrish SA (1992) Sucrose fermentation byFusobacterium mortiferum ATCC 25557: transport, catabolism and products. J Bacteriol 174:3227–3235

    PubMed  Google Scholar 

  • Vogler AP, Lengeler JW (1991) Comparison of the sequences of thenagE operons fromKlebsiella pneumoniae andEscherichia coli K12: enhanced variability of the enzyme IIN-acetylglucosamine in regions connecting functional domains. Mol Gen Genet 230:270–276

    Article  PubMed  Google Scholar 

  • Von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the transmembrane topology. EMBO J 5:3021–3027

    Google Scholar 

  • Wagner E, Götz F, Brückner R (1993) Cloning and characterization of thescrA gene encoding the sucrose-specific Enzyme II of the phosphotransferase system fromStaphylococcus xylosus. Mol Gen Genet 241:33–41

    Article  PubMed  Google Scholar 

  • Wootton JC, Drummond MH (1989) The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Engineering 2:535–543

    PubMed  Google Scholar 

  • Zhou D, Mattoo AK, Li N, Imaseki H, Solomos T (1994) Complete nucleotide sequence of potato tuber acid invertase cDNA. Plant Physiol 106:397–398

    Article  PubMed  Google Scholar 

  • Zukowski MM, Miller L, Cosgwell P, Chen K, Aymerich S, Steinmetz M (1990) Nucleotide sequence of thesacS locus ofBacillus subtilis reveals the presence of two regulatory genes. Gene 90:153–155

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Böhme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titgemeyer, F., Jahreis, K., Ebner, R. et al. Molecular analysis of thescrA andscrB genes fromKlebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme IIScr of the phosphotransferase system and a sucrose-6-phosphate invertase. Molec. Gen. Genet. 250, 197–206 (1996). https://doi.org/10.1007/BF02174179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174179

Key words

Navigation