Advertisement

Journal of Statistical Physics

, Volume 84, Issue 5–6, pp 899–925 | Cite as

Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem

  • Giovanni Gallavotti
Articles

Abstract

It is shown that the chaoticity hypothesis recently introduced in statistical mechanics, which is analogous to Ruelle's principle for turbulence, implies the Onsager reciprocity and the fluctuation-dissipation theorem in various reversible models for coexisting transport phenomena.

Key Words

Chaotic hypothesis Ruelle principle Onsager reciprocity fluctuation dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Arnold and A. Avez,Ergodic Problems of Classical Mechanics (Benjamin, New York, 1966).Google Scholar
  2. 2.
    R. Bowen,Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer-Verlag, New York, 1975).Google Scholar
  3. 3.
    A. Baranyai, D. T. Evans, and E. G. D. Cohen, Field dependent conductivity and diffusion in a two dimensional Lorentz gas,J. Stat. Phys. 70:1085–1098 (1993).Google Scholar
  4. 4.
    F. Bonetto and G. Gallavotti, Reversibility, coarse graining and the chaoticity principle, in preparation.Google Scholar
  5. 5.
    E. G. D. Cohen, In ..., H. J. M. Hanley, ed. (Marcel Dekker, New York, 1969).Google Scholar
  6. 6.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. Sinai, Steady state electric conductivity in the periodic Lorentz gas,Commun. Math. Phys. 154:569–601 (1993).Google Scholar
  7. 7.
    N. Chernov and J. Lebowitz, Stationary shear flow in boundary driven Hamiltonian systems, Rutgers University preprint (1995).Google Scholar
  8. 8.
    H. R. Dorfman, Transport coefficients, inEnciclopedia delle Scienze Fisiche (Enciclopedia Italiana, Rome, 1995), pp.1–31 [in Italian; English preprint available from author].Google Scholar
  9. 9.
    S. de Groot and P. Mazur,Non Equilibrium Thermodynamics (Dover, New York, 1984).Google Scholar
  10. 10.
    G. Eyink, Turbulence noise [mp_arc@ math. utexas. edu, #95-254] (1995).Google Scholar
  11. 11.
    D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Viscosity of a simple fluid from its maximal Lyapunov exponents,Phys. Rev. 42A:5990–5996 (1990).Google Scholar
  12. 12.
    D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in shearing steady flows,Phys. Rev. Lett. 71:2401–2404 (1993).Google Scholar
  13. 13.
    G. L. Eyink, J. L. Lebowitz, and H. Spohn, Hydrodynamics and fluctuations outside of local equilibrium: Driven diffusive systems [mp_arc@ math. utexas. edu, #95-168].Google Scholar
  14. 14.
    D. J. Evans and G. P. Morriss,Statistical Mechanics of Nonequilibrium Fluids(Academic Press, New York, 1990).Google Scholar
  15. 15.
    R. Esposito, R. Marra, and H. T. Yau, Diffusive limit of asymmetric simple exclusion, inThe State of Matter, M. Aizenmann and H. Araki, eds. (World Scientific, Singapore, 1994).Google Scholar
  16. 16.
    J. P. Eckmann and I. Procaccia, Fluctuations of dynamical scaling indices in nonlinear systems,Phys. Rev. 34A:659–661 (1986).Google Scholar
  17. 17.
    D. J. Evans and D. J. Searles, Equilibrium microstates which generate second law violating steady states, preprint, Research School of Chemistry, Canberra, ACT, 0200 (1993).Google Scholar
  18. 18.
    G. Gallavotti, Ergodicity, ensembles, irreversibility in Boltzmann and beyond,J. Stat. Phys. 78:1571–1589 (1995).Google Scholar
  19. 19.
    G. Gallavotti, Topics in Chaotic Dynamics (Springer-Verlag, Berlin, 1995).Google Scholar
  20. 20.
    G. Gallavotti, Reversible Anosov diffeomorphisms and large deviations,Math. Phys. Electronic J. 1:1–12 (1995).Google Scholar
  21. 21.
    G. Gallavotti, Coarse graining and chaos, in preparation.Google Scholar
  22. 22.
    G. Gallavotti, Chaotic principle: Some applications to developed turbulence [mp_arc@math. utexas. edu, #95-232] (1995).Google Scholar
  23. 23.
    J. W. Gibbs, On the fundamental formula of dynamics,Am. J. Math. II:49–64 (1879); see also J. W. Gibbs,Collected Works, Vol. II, Part 2.Google Scholar
  24. 24.
    G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics,Phys. Rev. Lett. 74:2694–2697 (1995).Google Scholar
  25. 25.
    G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states,J. Stat. Phys. 80:931–970 (1995).Google Scholar
  26. 26.
    L. S. Garcia-Colin and J. L. Del Rio, Green's contributions to nonequilibrium statistical mechanics, inPerspectives in Statistical Physics: M. S. Green Memorial Volume, H. J. Raveché, ed. (Noth-Holland, Amsterdam, 1981), pp. 75–87.Google Scholar
  27. 27.
    P. Gaspard and J. R. Dorfman, Chaotic scattering theory, of transport and reaction rate coefficients,Phys. Rev. E 51:28–35 (1995).Google Scholar
  28. 28.
    P. Gaspard and J. R. Dorfman, Chaotic scattering theory, thermodynamic formalism and transport cofficients [chao-dyn@xyz.lanl.gov, #9501014].Google Scholar
  29. 29.
    D. Gabrielli, G. Jona-Lasino, and C. Landim, Microscopic reversibility and thermodynamic fluctuations [mp_zrc@ math. utexas. edu, #95-248] (1995).Google Scholar
  30. 30.
    B. L. Holian, W. G. Hoover, and H. A. Posch, Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics,Phys. Rev. Lett. 59:10–13 (1987).Google Scholar
  31. 31.
    C. Kipnis, S. Olla, and S. R. S. Varadhan,Commun. Pure Appl. Math. XLII:243 (1989).Google Scholar
  32. 32.
    T. Levi-Civita and U. Amaldi,Lezioni di Meccanica Razionale (Zanichelli, Bologna, 1927), Vols. I, II1, II2.Google Scholar
  33. 33.
    C. Landim, S. Olla, and H. T. Yau, First-order correction for the hydrodynamic limit of asymmetric simple exclusion processes in dimensiond≥3, preprint, École Polytechnique, R. I. No. 307 (November 1994).Google Scholar
  34. 34.
    R. Livi, A. Politi, and S. Ruffo, Distribution of characteristic exponents in the thermodynamic limit,J. Phys. 19A:2033–2040 (1986).Google Scholar
  35. 35.
    L. Onsager, Reciprocal relations in irreversible processes. II,Phys. Rev. 38:2265–2279 (1932).Google Scholar
  36. 36.
    H. A. Posch and W. G. Hoover, Non equilibrium molecular dynamics of a classical fluid, inMolecular Liquids: New Perspectives in Physics and Chemistry, J. Teixeira-Dias, ed. (Kluwer, Amsterdam, 1992), pp. 527–547.Google Scholar
  37. 37.
    D. Ruelle,Chaotic Motions abd Strange Attractors (Cambridge University Press, Cambridge, 1968).Google Scholar
  38. 38.
    D. Ruelle, Measures describing a turbulent flow,Ann. N. Y. Acad. Sci. 357:1–9 (1980).Google Scholar
  39. 39.
    D. Ruelle, Ergodic theory of differentiable dynamical systems,Publ. Math. IHES 50:275–306 (1980).Google Scholar
  40. 40.
    D. Ruelle, A measure associated with axiom A attractors,Am. J. Math. 98, 619–654 (1976).Google Scholar
  41. 41.
    D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, preprint in mp_arc@math. utexas. edu, # 96-1.Google Scholar
  42. 42.
    Y. G. Sinai, Gibbs measures in ergodic theory,Russ. Math. Surv. 27:21–69 (1972);Lectures in Ergodic Theory (Princeton University Press, Princeton, New Jersey, 1977).Google Scholar
  43. 43.
    H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991).Google Scholar
  44. 44.
    S. Small, Differentiable dynamical systems,Bull. Am. Math. Soc. 73:747–818 (1967).Google Scholar
  45. 45.
    G. E. Uhlenbeck and G. W. Ford,Lectures in Statistical Mechanics (American Mathematical Society, Providence, Rhode Island, 1963), pp. 5, 16, 30.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Giovanni Gallavotti
    • 1
  1. 1.Center for Mathematical PhysicsRutgers UniversityNew Brunswick

Personalised recommendations