Molecular and General Genetics MGG

, Volume 251, Issue 6, pp 665–674 | Cite as

MAGGY, a retrotransposon in the genome of the rice blast fungusMagnaporthe grisea

  • M. L. Farman
  • Y. Tosa
  • N. Nitta
  • S. A. Leong
  • S. A. Leong
Original Paper


Full-length copies of a previously described repetitive DNA sequence (CH2-8) were isolated from the genome of theMagnaporthe grisea strain 2539. One copy of the complete element was sequenced and found to resemble agypsy-like LTR retrotransposon. We named this element MAGGY (MAGnaporthe GYpsy-like element). MAGGY contains two internal ORFs putatively encoding Gag, Pol and Env-like proteins which are similar to peptides encoded by retroelements identified in other filamentous fungi. MAGGY was found to be widely distributed amongM. grisea isolates from geographically dispersed locations and different hosts. It was present in high copy number in the genomes of all nine rice-pathogenic isolates examined. By contrast,M. grisea strains isolated from other Gramineae were found to possess varying copy numbers of MAGGY and in some cases the element was completely absent. The wide distribution of MAGGY suggests that this element invaded the genome ofM. grisea prior to the evolution of rice-specific form(s). It may since have been horizontally transmitted to other sub-specific groups. One copy of MAGGY, corresponding to the element we sequenced, was located at identical locations in the genomes of geographically dispersed strains, suggesting that this copy of the element is a relatively ancient insertion.

Key words

Magnaporthe grisea Rice blast Repetitive DNA Retrotransposon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  2. Boeke JD (1989) Transposable elements inSaccharomyces cerevisiae. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 403–434Google Scholar
  3. Borromeo ES, Nelson RJ, Bonman JM, Leung H (1993) Genetic differentiation among isolates ofPyricularia infecting rice and weed hosts. Phytopathology 83:393–399Google Scholar
  4. Correa-Victoria FJ, Zeigler RS (1993) Pathogenic variability inPyricularia grisea at a “hot spot” breeding site in Eastern Colombia. Plant Disease 77:1029–1035Google Scholar
  5. Correa-Victoria FJ, Zeigler RS, Levy M (1994). Virulence characteristics of genetic families ofPyricularia grisea in Columbia. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International, Wallingford, UK, pp 211–229Google Scholar
  6. Daboussi M-J, Langin T, Brygoo Y (1992) Fotl, a new family of fungal transposable elements. Mol Gen Genet 232:12–16Google Scholar
  7. Diolez A, Marches F, Fortini D, Brygoo Y (1995) Boty, a long-terminal-repeat retroelement in the phytopathogenic fungusBotrytis cinerea. Appl Environ Microbiol 61:103–108Google Scholar
  8. Dobinson KF, Harris RE, Hamer JE (1993)Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungusMagnaporthe grisea. Mol Plant-Microbe Interact 6:114–126Google Scholar
  9. Farman ML, Taura S, Leong SA (1996) TheMagnaporthe grisea DNA fingerprinting probe, MGR586, contains the 3′ end of an inverted repeat transposon. Mol Gen Genet (Following paper)Google Scholar
  10. Giatong P, Fredericksen RA (1969) Pathogenic variability and cytology of monoconidial subcultures ofPyricularia oryzae. Phytopathology 59:1152–1157Google Scholar
  11. Hamer JE, Farrall L, Orbach MJ, Valent B, Chumley FG (1989) Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc Natl Acad Sci USA 86:9981–9985.Google Scholar
  12. Jacks T, Varmus HE (1985) Expression of the Rous Sarcoma virus by ribosomal frameshifting. Science 230:1237–1242Google Scholar
  13. Julien J, Poirier-Hamon S, Brygoo Y (1992)Foret-1, a reverse transcriptase-like sequence in the filamentous fungusFusarium oxysporum. Nucleic Acids Res 20:3933–3937Google Scholar
  14. Kachroo PK, Chattoo BB, Leong SA (1994) Pot2, an inverted repeat transposon fromMagnaporthe grisea. Mol Gen Genet 245:339–348Google Scholar
  15. Kachroo PK, Chattoo BB, Leong SA (1995) Mg-SINE: a short interspersed nuclear element from the rice blast fungusMagnaporthe grisea. Proc Natl Acad Sci USA 92:11125–11129Google Scholar
  16. Kolmer J, Ellingboe AH (1988) Genetic relationships between fertility and pathogenicity and virulence to rice inMagnaporthe grisea. Can J Bot 66:891–897Google Scholar
  17. Lebrun M-H, Capy MP, Garcia N, Dutertre M, Brygoo Y, Notteghem JL, Valés M (1990) Biology and genetics ofPyricularia oryzae andPyricularia grisea populations: current situation and development of RFLP markers. In: Banta SJ, Argosino GS (eds) Rice Genetics II. International Rice Research Institute, Los Banos, Philippines, pp 487–497Google Scholar
  18. Leong SA, Farman ML, Smith J, Budde A, Tosa Y, Nitta N (1994) Molecular genetic approach to the study of cultivar specificity in the rice blast fungus. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International, Wallingford, UK, pp 87–110Google Scholar
  19. Leung H, Borromeo ES, Bernado MA, Notteghem JL (1988) Genetic analysis of virulence in the rice blast fungusMagnaporthe grisea. Phytopathology 78:1227–1233Google Scholar
  20. Levy M, Romao J, Marchetti MA, Hamer JE (1991) DNA finger-printing with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell 3:95–102Google Scholar
  21. Levy M, Correa-Victoria FJ, Zeigler RS, Xu S, Hamer JE (1993) Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathology 83:1427–1433Google Scholar
  22. McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) CfT-1: an LTR-retrotransposon inCladosporium fulvum, a fungal plant pathogen of tomato. Mol Gen Genet 233:337–347Google Scholar
  23. Mei B, Budde AD, Leong SA (1993)sid1, a gene initiating siderophore biosynthesis inUstilago maydis: molecular characterization, regulation by iron and role in phytopathogenecity. Proc Natl Acad Sci USA 90:903–907Google Scholar
  24. Mellor J, Fulton AM, Dobson MJ, Wilson W, Kingsman SM, Kingsman AJ (1985) A retrovirus-like strategy for the expression of a fusion protein encoded by the yeast transposon Ty1. Nature 313:243–246Google Scholar
  25. Ou SH, Ayad MR (1968) Pathogenic races ofPyricularia oryzae originating from single lesions and monoconidial cultures. Phytopathology 58:179–182Google Scholar
  26. Ou SH (1985) Blast In: Rice diseases. Commonwealth Mycological Institute, Slough, UK, pp 109–201.Google Scholar
  27. Sambrook J, Tritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  28. Shahjahan AKM, Nahar NS, Levy M, Renganathan N and Hamer JE (1993) Genetic organization of the rice blast fungus in Bangladesh. Abstracts of the 6th Meeting of the International Program on Rice Biotechnology, February 1–5, 1993, Chiang Mai, Thailand (Rockefeller Foundation)Google Scholar
  29. Shull V, Hamer JE (1994) Genomic structure and variability inPyricularia grisea. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International, Wallingford, UK, pp 65–86Google Scholar
  30. Skinner DZ, Budde AD, Farman ML, Smith JR, Leung H, Leong SA (1993) Genome organization of the rice blast fungus,Magnaporthe grisea: genetic map, electrophoretic karyotype and occurrence of repeated DNAs. Theor Appl Genet 87:545–557Google Scholar
  31. Sone T, Suto M, Tomita F (1993) Host species-specific repetitive DNA sequence in the genome ofMagnaporthe grisea, the rice blast fungus. Biosci Biotech Biochem 57:1228–1230Google Scholar
  32. Tosa Y, Nakayashiki H, Hyodo H, Mayama S, Kato H, Leong SA (1995) Distribution of retrotransposon MAGGY inPyricularia species. Ann Phytopathol Soc Jpn 61:549–554Google Scholar
  33. Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus,Magnaporthe grisea. Annu Rev Phytopathol 29:443–467Google Scholar
  34. Valent B, Chumley FG (1994) Avirulence genes and mechanisms of genetic instability in the rice blast fungus. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International, Wallingford, UK, pp 111–153Google Scholar
  35. Valent B, Farrall L, Chumley F (1991)Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87–101Google Scholar
  36. Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 53–108Google Scholar
  37. Zeigler RS, Cuoc LX, Scott RP, Bernado MA, Chen DH, Valent B, Nelson RJ (1995) The relationship between lineage and virulence inPyricularia grisea in the Philippines. Phytopathology 85:443–451Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. L. Farman
    • 1
  • Y. Tosa
    • 1
  • N. Nitta
    • 1
  • S. A. Leong
    • 1
  • S. A. Leong
    • 2
  1. 1.Department of Plant PathologyUniversity of WisconsinMadisonUSA
  2. 2.USDA-ARS Plant Disease Resistance Research UnitUniversity of WisconsinMadisonUSA

Personalised recommendations