Skip to main content
Log in

Characterization of type II protein secretion (xcp) genes in the plant growth-stimulatingPseudomonas putida, strain WCS358

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

InPseudomonas aeruginosa, the products of thexcp genes are required for the secretion of exoproteins across the outer membrane. Despite structural conservation of the Xcp components, secretion of exoproteins via the Xcp pathway is generally not found in heterologous organisms. To study the specificity of this protein secretion pathway, thexcp genes of another fluorescent pseudomonad, the plant growth-promotingPseudomonas putida strain WCS358, were cloned and characterized. Nucleotide sequence analysis revealed the presence of at least five genes, i.e.,xcpP, Q, R, S, andT, with homology toxcp genes ofP. aeruginosa. Unlike the genetic organization inP. aeruginosa, where thexcp cluster consists of two divergently transcribed operons, thexcp genes inP. putida are all oriented in the same direction, and probably comprise a single operon. Upstream ofxcpP inP. putida, an additional open reading frame, with no homolog inP. aeruginosa, was identified, which possibly encodes a lipoprotein. Mutational inactivation ofxcp genes inP. putida did not affect secretion, indicating that no proteins are secreted via the Xcp system under the growth conditions tested, and that an alternative secretion system is operative. To obtain some insight into the secretory pathway involved, the amino acid sequence of the N-terminus of the major extracellular protein was determined. The protein could be identified as flagellin. Mutations in thexcpQ andR genes ofP. aeruginosa could not be complemented by introduction of the correspondingxcp genes ofP. putida. However, expression of a hybrid XcpR protein, composed of the N-terminal one-third ofP. aeruginosa XcpR and the C-terminal two-thirds ofP. putida XcpR, did restore protein secretion in aP. aeruginosa xcpR mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akrim M, Bally M, Ball G, Tommassen J, Teerink H, Filloux A, Lazdunski A (1993) Xcp-mediated protein secretion inPseudomonas aeruginosa: identification of two additional genes and evidence for regulation ofxcp gene expression. Mol Microbiol 10:431–443

    PubMed  Google Scholar 

  • Bally M, Ball G, Badere A, Lazdunski A (1991) Protein secretion inPseudomonas aeruginosa: thexcpA gene encodes an integral inner membrane protein homologous toKlebsiella pneumoniae secretion function protein PulO. J Bacteriol 173:479–486

    PubMed  Google Scholar 

  • Bally M, Filloux A, Akrim M, Ball G, Lazdunski A, Tommassen J (1992) Protein secretion inPseudomonas aeruginosa: characterization of sevenxcp genes and processing of secretory apparatus components by prepilin peptidase. Mol Microbiol 6:1121–1131

    PubMed  Google Scholar 

  • Bortoli-German I, Brun E, Py B, Chippaux M, Barras F (1994) Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogenErwinia chrysanthemi. Mol Microbiol 11:545–553

    PubMed  Google Scholar 

  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983)β-Galactosidase gene fusions for analyzing gene expression inEscherichia coli and yeast. Methods Enzymol 100:293–308

    PubMed  Google Scholar 

  • Chen W-P, Kuo T-T (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21:2260

    PubMed  Google Scholar 

  • Condemine G, Dorel C, Hugovieux-Cotte-Pattat N, Robert-Baudouy J (1992) Some of theout genes involved in the secretion of pectate lyases inErwinia chrysanthemi are regulated bykdgR. Mol Microbiol 6:3199–3211

    PubMed  Google Scholar 

  • de Groot A, Filloux A, Tommassen J (1991) Conservation ofxcp genes, involved in the two-step protein secretion process, in differentPseudomonas species and other gram-negative bacteria. Mol Gen Genet 229:278–284

    Article  PubMed  Google Scholar 

  • de Groot A, Heijnen I, de Cock H, Filloux A, Tommassen J (1994) Characterization of type IV pilus genes in plant growth-promotingPseudomonas putida WCS358. J Bacteriol 176:642–650

    PubMed  Google Scholar 

  • Dente L, Cesareni G, Cortese R (1983) pEMBL: a new family of single stranded plasmids. Nucleic Acids Res 11:1645–1655

    PubMed  Google Scholar 

  • de Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg B (1987) Flagella of a plant growth-stimulatingPseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    PubMed  Google Scholar 

  • Filloux A, Murgier M, Wretlind B, Lazdunski A (1987) Characterization of twoPseudomonas aeruginosa mutants with defective secretion of extracellular proteins and comparison with other mutants. FEMS Microbiol Lett 40:159–163

    Article  Google Scholar 

  • Filloux A, Bally M, Ball G, Akrim M, Tommassen J, Lazdunski A (1990) Protein secretion in Gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. EMBO J 9:4323–4329

    PubMed  Google Scholar 

  • Frenken LGJ, Bos JW, Visser C, Muller W, Tommassen J, Verrips CT (1993a) An accessory gene,lipB, required for the production of activePseudomonas glumae lipase. Mol Microbiol 9:579–589

    PubMed  Google Scholar 

  • Frenken LGJ, de Groot A, Tommassen J, Verrips CT (1993b) Role of thelipB gene product in the folding of the secreted lipase ofPseudomonas glumae. Mol Microbiol 9:591–599

    PubMed  Google Scholar 

  • Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host-rangetacP expression vector. Gene 48:119–131

    Article  PubMed  Google Scholar 

  • Geels FP, Schippers B (1983) Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatment with antagonistic fluorescentPseudomonas spp.. Phytopathol Z 108:207–214

    Google Scholar 

  • Genin S, Boucher CA (1994) A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 243:112–118

    Article  PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    PubMed  Google Scholar 

  • Hobbs M, Mattick JS (1993) Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243

    PubMed  Google Scholar 

  • Howard SP, Critch J, Bedi A (1993) Isolation and analysis of eightexe genes and their involvement in extracellular protein secretion and outer membrane assembly inAeromonas hydrophila. J Bacteriol 175:6695–6703

    PubMed  Google Scholar 

  • Hu N-T, Hung M-N, Chiou S-J, Tang F, Chiang D-C, Huang H-Y, Wu C-Y (1992) Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane byXanthomonas campestris pv. campestris. J Bacteriol 174:2679–2687

    PubMed  Google Scholar 

  • Huang J, Schell MA (1990) Evidence that extracellular export of the endoglucanase encoded byegl ofPseudomonas solanacearum occurs by a two-step process involving a lipoprotein intermediate. J Biol Chem 265:11628–11632

    PubMed  Google Scholar 

  • Jiang B, Howard SP (1992) TheAeromonas hydrophila exeE gene, required both for protein secretion and normal outer membrane biogenesis, is a member of a general secretion pathway. Mol Microbiol 6:1351–1361

    PubMed  Google Scholar 

  • Kang Y, Huang J, Mao G, He L, Schell MA (1994) Dramatically reduced virulence of mutants ofPseudomonas solanacearum defective in export of extracellular proteins across the outer membrane. Mol Plant-Microbe Interact 7:370–377

    Google Scholar 

  • Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of theblaA gene ofYersinia enterocolitica. Gene 109:137–141

    Article  PubMed  Google Scholar 

  • Kazmierczak BI, Mielke DL, Russel M, Model P (1994) pIV, a filamentous phage protein that mediates phage export across the bacterial cell envelope, forms a multimer. J Mol Biol 238:187–198

    Article  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  Google Scholar 

  • Liao C-H (1991) Cloning of pectate lyase genepel fromPseudomonas fluorescens and detection of sequences homologous topel inPseudomonas viridiflava andPseudomonas putida. J Bacteriol 173:4386–4393

    PubMed  Google Scholar 

  • Lindeberg M, Collmer A (1992) Analysis of eightout genes in a cluster required for pectic enzyme secretion byErwinia chrysanthemi: sequence comparison with secretion genes from other gram-negative bacteria. J Bacteriol 174:7385–7397

    PubMed  Google Scholar 

  • Lugtenberg B, Meijers J, Peters R, van der Hoek P, van Alphen L (1975) Electrophoretic resolution of the ‘major outer membrane protein’ ofEscherichia coli K12 into four bands. FEBS Lett 58:254–258

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Peters R, Bernheimer H, Berendsen W (1976) Influence of cultural conditions and mutations on the composition of the outer membrane proteins ofEscherichia coli. Mol Gen Genet 147:251–262

    Article  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxynucleic acid from micro-organisms. J Mol Biol 3:208–218

    Google Scholar 

  • Martin PR, Hobbs M, Free PD, Jeske Y, Mattick JS (1993) Characterization ofpilQ, a new gene required for the biogenesis of type 4 fimbriae inPseudomonas aeruginosa. Mol Microbiol 9:857–868

    PubMed  Google Scholar 

  • Nunn DN, Lory S (1991) Product of thePseudomonas aeruginosa genepilD is a prepilin leader peptidase. Proc Natl Acad Sci USA 88:3281–3285

    PubMed  Google Scholar 

  • Possot O, Pugsley AP (1994) Molecular characterization of PulE, a protein required for pullulanase secretion. Mol Microbiol 12:287–299

    PubMed  Google Scholar 

  • Pugsley AP (1992) Translocation of a folded polypeptide across the outer membrane inEscherichia coli. Proc Natl Acad Sci USA 89:12058–12062

    PubMed  Google Scholar 

  • Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108

    PubMed  Google Scholar 

  • Pugsley AP, Kornacker MG, Poquet I (1991) The general secretion pathway is directly required for extracellular pullulanase secretion inEscherichia coli. Mol Microbiol 5:343–352

    PubMed  Google Scholar 

  • Py B, Salmond GPC, Chippaux M, Barras F (1991) Secretion of cellulases inErwinia chrysanthemi andE. carotovora is species-specific. FEMS Microbiol Lett 79:315–322

    Article  Google Scholar 

  • Reeves PJ, Whitcombe D, Wharam S, Gibson M, Allison G, Bunce N, Barallon R, Douglas P, Mulholland V, Stevens S, Walker D, Salmond GPC (1993) Molecular cloning and characterization of 13out genes fromErwinia carotovora subspeciescarotovora: genes encoding members of a general secretion pathway (GSP) widespread in Gram-negative bacteria. Mol Microbiol 8:443–456

    PubMed  Google Scholar 

  • Russel M (1993) Protein-protein interactions during filamentous phage assembly. J Mol Biol 231:689–697

    Article  PubMed  Google Scholar 

  • Russel M (1994) Phage assembly: a paradigm for bacterial virulence factor export? Science 265:612–614

    PubMed  Google Scholar 

  • Russel M, Kazmierczak B (1993) Analysis of the structure and subcellular location of filamentous phage pIV. J Bacteriol 175:3998–4007

    PubMed  Google Scholar 

  • Salmond GPC, Reeves PJ (1993) Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem Sci 18:7–12

    Article  PubMed  Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 ofPseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794

    PubMed  Google Scholar 

  • Tommassen J, van Tol H, Lugtenberg B (1983) The ultimate localization of an outer membrane protein ofEscherichia coli K-12 is not determined by the signal sequence. EMBO J 2:1275–1279

    PubMed  Google Scholar 

  • Tommassen J, Filloux A, Bally M, Murgier M, Lazdunski A (1992) Protein secretion inPseudomonas aeruginosa. FEMS Microbiol Rev 103:73–90

    Article  Google Scholar 

  • Topping TB, Randall LL (1994) Determination of the binding frame within a physiological ligand for the chaperone SecB. Protein Sci 3:730–736

    PubMed  Google Scholar 

  • Totten PA, Lory S (1990) Characterization of the type a flagellin gene fromPseudomonas aeruginosa PAK. J Bacteriol 172:7188–7199

    PubMed  Google Scholar 

  • Venturi V, Ottevanger C, Leong J, Weisbeek PJ (1993) Identification and characterization of a siderophore regulatory gene (pfrA) ofPseudomonas putida WCS358: homology to the alginate regulatory genealgQ ofPseudomonas aeruginosa. Mol Microbiol 10:63–73

    PubMed  Google Scholar 

  • Venturi V, Otten M, Korse V, Brouwer B, Leong J, Weisbeek PJ (1995a) Alginate regulatory and biosynthetic gene homologs inPseudomonas putida WCS358: correlation with the siderophore regulatory genepfrA. Gene 155:83–88

    Article  PubMed  Google Scholar 

  • Venturi V, Ottevanger C, Bracke M, Weisbeek PJ (1995b) Iron regulation of siderophore biosynthesis and transport inPseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Mol Microbiol 15:1081–1093

    PubMed  Google Scholar 

  • Whitchurch CB, Mattick JS (1994) Characterization of a gene,pilU, required for twitching motility but not phage sensitivity inPseudomonas aeruginosa. Mol Microbiol 13:1079–1091

    PubMed  Google Scholar 

  • Winstanley C, Morgan AW, Pickup RW, Saunders JR (1994) Molecular cloning of twoPseudomonas flagellin genes and basal body structural genes. Microbiology 140:2019–2031

    PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  Google Scholar 

  • Zucker M, Hankin L (1970) Regulation of pectate lyase synthesis inPseudomonas fluorescens andErwinia carotovora. J Bacteriol 104:13–18

    PubMed  Google Scholar 

  • Zucker M, Hankin L (1971) Inducible pectate lyase synthesis and phytopathogenicity ofPseudomonas fluorescens. Can J Microbiol 17:1313–1318

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. A. M. J. J. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Groot, A., Krijger, J.J., Filloux, A. et al. Characterization of type II protein secretion (xcp) genes in the plant growth-stimulatingPseudomonas putida, strain WCS358. Molec. Gen. Genet. 250, 491–504 (1996). https://doi.org/10.1007/BF02174038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174038

Key words

Navigation