Molecular and General Genetics MGG

, Volume 250, Issue 4, pp 437–446 | Cite as

Sucrose synthase and enolase expression in actinorhizal nodules ofAlnus glutinosa: comparison with legume nodules

  • M. van Ghelue
  • B. Solheim
  • A. Ribeiro
  • T. Bisseling
  • K. Pawlowski
  • A. D. L. Akkermans
Original Paper

Abstract

Two different types of nitrogen-fixing root nodules are known — actinorhizal nodules induced byFrankia and legume nodules induced by rhizobia. While legume nodules show a stem-like structure with peripheral vascular bundles, actinorhizal nodule lobes resemble modified lateral roots with a central vascular bundle. To compare carbon metabolism in legume and actinorhizal nodules, sucrose synthase and enolase cDNA clones were isolated from a cDNA library, obtained from actinorhizal nodules ofAlnus glutinosa. The expression of the corresponding genes was markedly enhanced in nodules compared to roots. In situ hybridization showed that, in nodules, both sucrose synthase and enolase were expressed at high levels in the infected cortical cells as well as in the pericycle of the central vascular bundle of a nodule lobe. Legume sucrose synthase expression was studied in indeterminate nodules from pea and determinate nodules fromPhaseolus vulgaris by usingin situ hybridization.

Key words

Alnus glutinosa Actinorhiza Nodule Sucrose synthase Enolase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akazawa T, Okamoto K (1980) Biosynthesis and metabolism of sucrose. Biochem Plants 3:199–220Google Scholar
  2. Akkermans ADL, Huss-Danell K, Roelofsen W (1981) Enzymes of the tricarboxylic acid cycle and the malate-aspartate shuttle in the N2-fixing endophyte ofAlnus glutinosa. Physiol Plant 53:289–294Google Scholar
  3. Anthon GE, Emmerich DW (1990) Developmental regulation of enzymes of sucrose and hexose metabolism in effective and ineffective soybean nodules. Plant Physiol 92:346–351Google Scholar
  4. Benson DR, Silvester WB (1993) Biology ofFrankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedGoogle Scholar
  5. Berry AM, Sunnel LA (1990) The infection process and nodule development. In Schwintzer CR, Tjepkema JD (eds) The biology ofFrankia and actinorhizal plants. Academic Press, New York, pp 61–81Google Scholar
  6. Bisseling T, van den Bos RC, van Kammen A (1978) The effect of ammonium nitrate on the synthesis of nitrogenase and the concentration of leghemoglobin in pea root nodules induced byRhizobium leguminosarum. Biochim Biophys Acta 539:1–11PubMedGoogle Scholar
  7. Bhuvaneswari TV, Turgeon BG, Bauer WD (1980) Early events in the infection of soybean (Glycine max L. Merr) byRhizobium japonicum. Plant Physiol 66:1027–1031Google Scholar
  8. Blauenfeldt J, Joshi OA, Gresshoff PM, Caetano-Anollés G (1994) Nodulation of white clover (Trifolium repens) in the absence ofRhizobium. Protoplasma 179:106–110Google Scholar
  9. Burgess D, Peterson RL (1987a) Development ofAlnus japonica root nodules after inoculation withFrankia strain HFPArI3. Can J Bot 65:1647–1657Google Scholar
  10. Burgess D, Peterson RL (1987b) Effect of nutrient conditions on root nodule development inAlnus japonica. Can J Bot 65:1658–1670Google Scholar
  11. Chourey PS, Taliercio EW, Kane EJ (1991) Tissue-specific expression and anaerobically induced posttranscriptional modulation of sucrose synthase inSorghum bicolor M. Plant Physiol 96:485–490Google Scholar
  12. Cushman JC, Gietl C, Lepiniec L, Gadal P, Izui K (1994) Genes of malate and pyruvate metabolism. Plant Mol Biol Rep 12:S43-S44Google Scholar
  13. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395PubMedGoogle Scholar
  14. Dicbold R, Noel KD (1989)Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analysis and symbiotic behaviour on three hosts. J Bacteriol 171:4821–4830PubMedGoogle Scholar
  15. Forde BG, Day HM, Turton JF, Shen W-C, Cullimore JV, Oliver JE (1989) Two glutamine synthetase genes fromPhaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenicLotus corniculatus plants. Plant Cell 1:391–401CrossRefPubMedGoogle Scholar
  16. Franssen HJ, Vijn I, Yang W-C, Bisseling T (1992) Developmental aspects of theRhizobium-legume symbiosis. Plant Mol Biol 19:89–107CrossRefPubMedGoogle Scholar
  17. Goodwin TW, Mercer EI (1983) Introduction to plant biochemistry (2nd edn). Pergamon Press, OxfordGoogle Scholar
  18. Gordon AJ, Thomas BJ, Reynolds PHS (1992) Localization of sucrose synthase in soybean root nodules. New Phytol 122:35–44Google Scholar
  19. Hake S, Kelley PM, Taylor WC, Freeling M (1985) Coordinate induction of alcohol dehydrogenase I, aldolase, and other anaerobic RNAs in maize. J Biol Chem 260:5050–5054PubMedGoogle Scholar
  20. Hannah LC, Frommer W, Su J-C, Chourey P, Park W (1994) Sucrose synthases. Plant Mol Biol Rep 12, S72Google Scholar
  21. Huss-Danell K, Bergman B (1990) Nitrogenase inFrankia from root nodules ofAlnus incana (L.) Moench: immunolocalization of the Fe- and MoFe proteins during vesicle differentiation. New Phytol 116:443–455Google Scholar
  22. Joshi PA, Caetano-Anollés G, Graham ET, Gresshoff PM (1991) Ontogeny and ultrastructure of spontaneous nodules in alfalfa (Medicago sativa). Protoplasma 162:1–11CrossRefGoogle Scholar
  23. Joshi PA, Caetano-Anollés G, Graham ET, Gresshoff PM (1993) Ultrastructure of transfer cells in spontaneous nodules of alfalfa (Medicago sativa). Protoplasma 172:64–76CrossRefGoogle Scholar
  24. Kozlowski TT, Keller T (1966) Food relations of woody plants. Bot Rev 32:2939Google Scholar
  25. Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238:106–119PubMedGoogle Scholar
  26. Kouchi H, Katsuhiko F, Katagiri H, Minamisawa K, Tajima S (1988) Isolation and enzymological characterization of infected and uninfected cell protoplasts from root nodules ofGlycine max. Physiol Plant 73:327–334Google Scholar
  27. Küster H, Frühling M, Perlick AM, Pühler A (1993) The sucrose synthase gene is predominantly expressed in the root nodule tissue ofVicia faba. Mol Plant-Microbe Interact 6:507–514PubMedGoogle Scholar
  28. Lin J, Walsh KB, Canvin DT, Layzell DB (1988) Structural and physiological bases for effectivity of soybean nodules formed by fast-growing and slow-growing bacteria. Can J Bot 66:526–534Google Scholar
  29. Malek W (1988) Microscopic structure of ineffective alfalfa nodules formed by auxotrophic mutants ofRhizobium meliloti. J Basic Microbiol 28:651–658Google Scholar
  30. Martin T, Frommer WB, Salanoubat M, Willmitzer L (1993) Expression of anArabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J 4:367–377CrossRefPubMedGoogle Scholar
  31. McClure PR, Cocker III GT, Schubert KR (1983) Carbon dioxide fixation in roots and nodules ofAlnus glutinosa. Plant Physiol 771:652–657Google Scholar
  32. Miao G-H, Hirel B, Marsolier MC, Ridge RW, Verma DPS (1991) Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenicLotus corniculatus. Plant Cell 3:11–22CrossRefPubMedGoogle Scholar
  33. Morell M, Copeland L (1984) Enzymes of sucrose breakdown in soybean nodules. Alkaline invertase. Plant Physiol 74:149–154Google Scholar
  34. Morell M, Copeland L (1985) Sucrose synthase of soybean nodules. Plant Physiol 78:149–154Google Scholar
  35. Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885CrossRefPubMedGoogle Scholar
  36. Newcomb W (1981) Nodule morphogenesis and differentiation. In Giles KL, Atherly AG (eds) Biology of theRhizobiaceae. Int Rev Cytol Supp 13, Academic Press, New York, pp 61–81Google Scholar
  37. Nolte KD, Koch KE (1993) Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101:899–905PubMedGoogle Scholar
  38. Pate JS (1962) Root exudation studies on the exchange of14C-labeled organic substances between the roots and shoot of the nodulated legume. Plant Soil 17:333–356CrossRefGoogle Scholar
  39. Pawlowski K, Akkermans ADL, van Kammen A, Bisseling T (1995) Expression of bacterialnif genes in actinorhizal nodules ofAlnus glutinosa. Plant and Soil 170:371–376Google Scholar
  40. Pawlowski K, Kunze R, de Vries S, Bisseling T (1994) Isolation of total, poly(A) and polysomal RNA from plant tissues. In Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual D5, (2nd edn). Kluwer Academic Publishers, Dordrecht, pp 1–13Google Scholar
  41. Price GD, Mohaptra SS, Gresshoff PM (1984) Structure of nodules formed byRhizobium strain ANU289 in the nonlegumeParasponia and the legume siratro (Macroptilium atropurpureum). Bot Gaz 145:444–451CrossRefGoogle Scholar
  42. Ribeiro A, Akkermans ADL, van Kammen A, Bisseling T, Pawlowski K (1995) A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7:785–794CrossRefPubMedGoogle Scholar
  43. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  44. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  45. Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574CrossRefGoogle Scholar
  46. Solomos T, Laties GG (1974) Similarities between the actions of ethylene and cyanide in initiating the climacteric and ripening of avocados. Plant Physiol 54:506–511Google Scholar
  47. Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651PubMedGoogle Scholar
  48. Sonnewald U, Willmitzer L (1992) Molecular approaches to sink-source interactions. Plant Physiol 99:1267–1270Google Scholar
  49. Taté R, Patriarca EJ, Riccio A, Defez R, Iaccarino M (1994) Development ofPhaseolus vulgaris root nodules. Mol Plant-Microbe Interact 7:582–589Google Scholar
  50. Thummler F, Verma DPS (1987) Nodulin-100 of soybean is the subunit of sucrose synthase regulated by the availibility of free heme in nodules. J Biol Chem 262:14730–14736PubMedGoogle Scholar
  51. Trinick MG (1979) Structure of nitrogen-fixing nodules formed byRhizobium on roots ofParasponia andersonii. Appl Env Microbiol 55:2046–2055Google Scholar
  52. Van der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, expression, and evolution. Plant Cell 3:719–735CrossRefPubMedGoogle Scholar
  53. Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation? Annu Rev Plant Physiol Plant Mol Biol 42:373–392CrossRefGoogle Scholar
  54. Vasse JM, De Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306PubMedGoogle Scholar
  55. Walsh KB, McCully BE, Canny MJ (1989) Vascular transport and soybean nodule function: nodule xylem is a blind alley, not a throughway. Plant Cell Env 12:395–405Google Scholar
  56. Wheeler CT, Lawrie AC (1976) Nitrogen fixation in root nodules of alder and pea in relation to the supply of photosynthetic assimilates. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, pp 497–509Google Scholar
  57. Wheeler CT, Watts SH, Hillman JR (1983) Changes in carbohydrates and nitrogenase compounds in the root nodules ofAlnus glutinosa in relation to dormancy. New Phytol 95:209–218Google Scholar
  58. Zammit A, Copeland L (1993) Immunocytochemical localisation of nodule-specific sucrose synthase in soybean nodules. Aust J Plant Physiol 22:25–32Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. van Ghelue
    • 1
  • B. Solheim
    • 1
  • A. Ribeiro
    • 2
  • T. Bisseling
    • 2
  • K. Pawlowski
    • 2
  • A. D. L. Akkermans
    • 3
  1. 1.Institute of Biology and GeologyUniversity of TromsøTromsøNorway
  2. 2.Department of Molecular BiologyAgricultural UniversityWageningenThe Netherlands
  3. 3.Department of MicrobiologyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations