Skip to main content
Log in

Structural genes for Mg-chelatase subunits in barley:Xantha-f, -g and-h

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Barley mutants in the lociXantha-f, Xantha-g andXantha-h, when fed with 5-aminolevulinate in the dark, accumulate protoporphyrin IX. Mutant alleles at these loci that are completely blocked in protochlorophyllide synthesis are also blocked in development of prolamellar bodies in etioplasts. In contrast to wild type, thexan-f, -g and-h mutants had no detectable Mg-chelatase activity, whereas they all had methyltransferase activity for synthesis of Mg-protoporphyrin monomethyl ester. Antibodies recognising the CH42 protein ofArabidopsis thaliana and the OLIVE (OLI) protein ofAntirrhinum majus immunoreacted in wild-type barley with 42 and 150 kDa proteins, respectively. Thexan-h mutants lacked the protein reacting with antibodies raised against the CH42 protein. Twoxan-f mutants lacked the 150 kDa protein recognised by the anti-OLI antibody. Barley genes homologous to theA. majus olive and theA. thaliana Ch-42 genes were cloned using PCR and screening of cDNA and genomic libraries. Probes for these genes were applied to Northern blots of RNA from thexantha mutants and confirmed the results of the Western analysis. The mutantsxan-f 27, -f40, -h56 and-h 57 are defective in transcript accumulation while-h 38 is defective in translation. Southern blot analysis established thath 38 has a deletion of part of the gene. Mutantsxan-f 10 and-f 41 produce both transcript and protein and it is suggested that these mutations are in the catalytic sites of the protein. It is concluded thatXan-f and-h genes encode two subunits of the barley Mg-chelatase and thatXan-g is likely to encode a third subunit. The XAN-F protein displays 82% amino acid sequence identity to the OLI protein ofAntirrhinum, 66% to theSynechocystis homologue and 34% identity to theRhodobacter BchH subunit of Mg-chelatase. The XAN-H protein has 85% amino acid sequence identity to theArabidopsis CH42 protein, 69% identity to theEuglena CCS protein, 70% identity to theCryptomonas BchA andOlisthodiscus CssA proteins, as well as 49% identity to theRhodobacter BchI subunit of Mg-chelatase. Identification of the barleyXan-f andXan-h encoded proteins as subunits required for Mg-chelatase activity supports the notion that theAntirrhinum OLI protein and theArabidopsis CH42 protein are subunits of Mg-chelatase in these plants. The expression of both theXan-f and-h genes in wild-type barley is light induced in leaves of greening seedlings, and in green tissue the genes are under the control of a circadian clock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong GA, Alberti M, Leach F, Hearst JE (1989) Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster ofRhodobacter capsulatus. Mol Gen Genet 216:254–268

    Article  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Strul K (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Barkardottir RB, Jensen BF, Kreiberg JD, Nielsen PS, Gausing K (1987) Expression of selected nuclear genes during leaf development in barley. Dev Genet 8:495–511

    Article  Google Scholar 

  • Bogorad L, Granick J (1953) Protoporphyrin precursors produced by aChlorella mutant. J Biol Chem 202:793–800

    PubMed  Google Scholar 

  • Bollivar DW, Bauer CE (1992) Nucleotide sequence of S-adenosyl-l-methionine:magnesium protoporphyrin methyl transferase fromRhodobacter capsulatus. Plant Physiol 98:408–410

    Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE (1994) Directed mutational analysis of bacteriochlorophylla biosynthesis inRhodobacter capsulatus. J Mol Biol 237:622–640

    Article  PubMed  Google Scholar 

  • Brown JWS (1986) A catalogue of splice junction and putative branch point sequences from plant introns. Nucl Acids Res 14:9549–9559

    PubMed  Google Scholar 

  • Castelfranco PA, Weinstein JD, Schwarcz S, Pardo AD, Wezelman BE (1979) The magnesium insertion step in chlorophyll biosynthesis. Arch Biochem Biophys 192:592–598

    Article  PubMed  Google Scholar 

  • Crouzet J, Levy-Schil S, Cameron B, Cauchois L, Rigault S, Rouyez M-C, Blanche F, Debussche L, Thibaut D (1991) Nucleotide sequence and genetic analysis of a 13.1 kilobase-pairPseudomonas denitrificans DNA fragment containing fivecob genes and identification of structural genes encoding Cob (I) alamin adenosyltransferase, cobyric acid synthase, and bifunctional cobinamide kinase-cobinamide phosphate guanylyl-transferase. J Bacteriol 173:6074–6087

    PubMed  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, von Wettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase ofRhodobacter sphaeroides: reconstitution of activity by combining the products of thebchH, I andD genes expressed inE. coli. Proc Natl Acad Sci USA 92:1941–1944

    PubMed  Google Scholar 

  • Gough S (1972) Defective synthesis of porphyrins in barley plastids caused by mutation in nuclear genes. Biochim Biophys Acta 286:36–54

    PubMed  Google Scholar 

  • Henningsen KW, Boynton JE, von Wettstein D (1993) Mutants atxantha andalbina loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.). Biologiske Skrifter 42:1–349 Royal Danish Academy of Sciences and Letters. Available from Munksgaard Export and Subscription Service. Nørre Søgade 35, DK-1370 Copenhagen

    Google Scholar 

  • Höfgen R, Axelsen KB, Kannangara CG, Schüttke I, Pohlenz H-D, Willmitzer L, Grimm B, von Wettstein D (1994) A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci USA 91:1726–1730

    PubMed  Google Scholar 

  • Hudson A, Carpenter R, Doyle S, Coen ES (1993)Olive: a key gene required for chlorophyll biosynthesis inAntirrhinum majus. EMBO J 12:3711–3719

    PubMed  Google Scholar 

  • Kahn A, Avivi-Bleiser N, von Wettstein D (1976) Genetic regulation of chlorophyll synthesis analysed with double mutants in barley. In: Bücher T, Neupert W, Sebald W, Werner W (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier/North-Holland, Amsterdam, pp 119–131

    Google Scholar 

  • Kannangara CG, Gough SP, von Wettstein D (1978) Biosynthesis of δ-aminolevulinate and chlorophyll and its genetic regulation. In: Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds) Chloroplast development. Elsevier/North-Holland, Amsterdam, pp 147–160

    Google Scholar 

  • Kannangara CG, Gough SP, Oliver RP, Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49:417–439

    Google Scholar 

  • Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A, von Wettstein D (1988) tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: Steps that regulate chlorophyll synthesis. Trends Biochem Sci 13:139–143

    Article  PubMed  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging inArabidopsis thaliana. EMBO J 9:1337–1346

    PubMed  Google Scholar 

  • Madsen O, Sandal L, Sandal NN, Marker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23:35–43

    Article  PubMed  Google Scholar 

  • Mascia P (1978) An analysis of precursors accumulated by several chlorophyll biosynthetic mutants of maize. Mol Gen Genet 161:237–244

    Article  Google Scholar 

  • Möller W, Amons R (1985) Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett 186:1–7

    Article  PubMed  Google Scholar 

  • Nielsen OF (1974) Macromolecular physiology of plastids XII.Tigrina mutants of barley: genetic, spectroscopic and structural characterization. Hereditas 76:269–304

    PubMed  Google Scholar 

  • Olsen O, Wang X, von Wettstein D (1993) Sodium azide mutagenesis: preferential generation of A.T → G.C transitions in the barleyAnt18 gene. Proc Natl Acad Sci USA 90:8043–8047

    PubMed  Google Scholar 

  • Orsat B, Monfort A, Chatellard P, Stutz E (1992) Mapping and sequencing of an actively transcribedEuglena gracilis chloroplast gene (ccsA) homologous to theArabidopsis thaliana nuclear genecs (ch42). FEBS Lett 303:181–184

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schuler MA, Zielinski RA (1989) Methods in plant molecular biology. Academic Press, San Diego

    Google Scholar 

  • Von Heijne G, Steppun J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Article  PubMed  Google Scholar 

  • Von Wettstein D, Henningsen KW, Boynton JE, Kannangara GC, Nielsen OF (1971) The genetic control of chloroplast development in barley. In: Boardmann NK, Linnane AW, Smillie RM (eds) Autonomy and biogenesis of mitochondria and chloroplasts. North-Holland, Amsterdam, pp 205–223

    Google Scholar 

  • Von Wettstein D, Kahn A, Nielsen OF, Gough S (1974) Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. Science 184:800–802

    Google Scholar 

  • Walker CJ, Weinstein JD (1994) The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J 299:277–284

    PubMed  Google Scholar 

  • Wang W-Y, Boynton JE, Gillham NW, Gough S (1975) Genetic control of chlorophyll biosynthesis inChlamydomonas: analysis of a mutant affecting synthesis of δ-aminolevulinic acid. Cell 6:75–84

    PubMed  Google Scholar 

  • Willows RD, Gibson LCD, Kannangara CG, Hunter CN, von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase ofRhodobacter. Eur J Biochem, in press

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, P.E., Petersen, B.L., Stummann, B.M. et al. Structural genes for Mg-chelatase subunits in barley:Xantha-f, -g and-h . Molec. Gen. Genet. 250, 383–394 (1996). https://doi.org/10.1007/BF02174026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174026

Key words

Navigation