HIV infection of endothelial cells

Summary

Endothelium plays an important role in the pathogenesis of viral infections, and a potential involvement in HIV infection is suggested by several in vivo observations. In vitro studies gave conflicting results regarding the susceptibility of endothelial cells (EC) to HIV, depending on the tissue source of EC and on their functional status. In fact, microvascular EC from adipose tissue, renal glomeruli, brain capillaries, and epathic sinusoids can be productively infected by HIV-1, via CD4-dependent or -independent pathways. Macrovascular EC are generally found to be resistant to HIV-1 infection, unless treated with a combination of pro-inflammatory cytokines, or in a status of active proliferation. Quiescent or low-replicating human umbilical vein endothelial cells (HUVEC) can be abortively infected with HIV-1, but virus production is rescued by cocultivation with either lymphoblastoid or activated T-cells from adult or cord blood, giving rise to substantial virus yields in coculture supernatants. The interaction of HIV-1 with HUVEC is mediated by the alternate receptor GalCer, but is enhanced by the presence of antibodies to membrane structures present on both HUVEC and HIV-1, such as ICAM-1, acting as a molecular bridge. Treatment of HUVEC with IFN-γ causes a dose-dependent enhancement of HIV-1 yield in cocultures. This effect does not appear to be mediated by early replicative events occurring in HUVEC, such as HIV-1 adsorption or retrotranscription. Rather, IFN-γ-mediated enhancement of ICAM-1 exposed on the surface of HUVEC increases adhesion of T-cells to infected HUVEC, leading to increased viral transmission. The pathological significance of low-productive or abortive infection of HUVEC with HIV-1 is potentially important, since EC expressing little, if any, virus antigen, can escape the elimination by cytotoxic cells, still retaining the capability to transmit the infection to T-cells, through a mechanism that is enhanced during the inflammatory process. These considerations, together with the fact that the inflammatory process is often accompanied by conditions favoring EC proliferation, such as vessel repair, and by the presence of HIV-stimulatory cytokines, and the fact that these conditions can determine the switch from abortive to productive HIV-1 infection, support the relevance of EC involvement in the pathogenesis of HIV-1 infection and progression, especially in view of the critical role of EC in establishing the selective properties of most anatomical barriers.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Beilke, M.A., Rev. Infect. Dis., 41 (1989) 273.

    Google Scholar 

  2. 2

    Huber, S.A., Haisch, C. and Lodge, P.A., J. Virol., 64 (1990) 4516.

    Google Scholar 

  3. 3

    Toorkey, C.B. and Carrigan, D.R., J. Infect. Dis., 160 (1989) 741.

    Google Scholar 

  4. 4

    Friedman, H.M., Rev. Infect. Dis., 11 (1989) S700.

    Google Scholar 

  5. 5

    Ades, E.W., Hierholzer, J.C., George, V., Black, J. and Candal, F., J. Virol. Methods, 39 (1992) 83.

    Google Scholar 

  6. 6

    Pensiero, M.N., Sharefkin, J.B., Dieffenbach, C.W. and Hay, J., J. Virol., 66 (1992) 5929.

    Google Scholar 

  7. 7

    Schnittler H.J., Manher, F., Drenckhahn, D. and Feldmann, H., J. Clin. Invest., 91 (1993) 1301.

    Google Scholar 

  8. 8

    Hirschberg, H., Hum. Immunol., 28 (1981) 258.

    Google Scholar 

  9. 9

    Zimmerman, G.A., Prescott, S.M. and McIntyre, T.M., Immunol. Today, 13 (1992) 93.

    Google Scholar 

  10. 10

    Shalaby, M.R., Waage, A. and Espevik, T., Cell. Immunol., 121 (1989) 372.

    Google Scholar 

  11. 11

    Teitel, J.M., Shore, A., McBarron, J. and Schiavone, A., Scand. J. Immunol., 29 (1989) 165.

    Google Scholar 

  12. 12

    Mantovani, A., Bussolino, F. and Dejana, E., FASEB J., 6 (1992) 2591.

    Google Scholar 

  13. 13

    Pober, J. and Cotran, R., Physiol. Rev., 70 (1990) 427.

    Google Scholar 

  14. 14

    Del Pozo, A.M., Sanchez-Mateos, P., Nieto, M. and Sanchez-Madrid, F., J. Cell Biol., 131 (1995) 495.

    Google Scholar 

  15. 15

    Springer, T.A., Cell, 67 (1994) 301.

    Google Scholar 

  16. 16

    Von Sydow, M., Sonnenberg, A., Gaines, H. and Strannegard, O., Aids Res. Hum. Retroviruses, 7 (1992) 375.

    Google Scholar 

  17. 17

    Fan, J., Bass, H.Z. and Fahey, J.L., J. Immunol., 151 (1993) 5031.

    Google Scholar 

  18. 18

    Mosmann, T.R., Science, 265 (1994) 193.

    Google Scholar 

  19. 19

    Most, J., Zangerle, R., Herold, M., Fuchs, D., Wachter, H., Fritsch, P. and Dierich, M.P., J. Aids, 6 (1993) 221.

    Google Scholar 

  20. 20

    De Stefano, E., Friedman, R.M., Friedman-Kien, A.C. and Goedert, J.J., J. Infect. Dis., 159 (1982) 815.

    Google Scholar 

  21. 21

    Capobianchi, M.R., Mattana, P., Mercuri, F., Conciatori, G., Ameglio, F., Ankel, H. and Dianzani, F., J. Interferon Res., 12 (1992) 431.

    Google Scholar 

  22. 22

    Joshi, V.V., Pawel, B., Connor, E., Shearer, L., Oleske, J.M., Morrison, S. and Marin-Garcia, J., Pediatr. Pathol., 7 (1987) 261.

    Google Scholar 

  23. 23

    Baroni, C.D., Pezzella, F., Mirolo, M., Ruco, L.P. and Rossi, G.B., Histopathology, 10 (1986) 5.

    Google Scholar 

  24. 24

    Pomerantz, R.J., De La Monte, S.M., Donegan, P., Rota, T.R., Vogt, M.W., Craven, D.E. and Hirsch, M.S., Ann. Intern. Med., 108 (1988) 321.

    Google Scholar 

  25. 25

    Wiley, C.A., Schrier, R.D., Nelson, J.A., Lampert, P.W. and Oldstone, M.B.A., Proc. Natl. Acad. Sci. USA, 83 (1986) 7089.

    Google Scholar 

  26. 26

    Lafueillade, A., Alessi, M.C., Poizot-Martin, I., Boyer-Neumann, C., Zandotti, C., Quilichini, R., Aubert, T., Tamalet, C. and Juhan-Vague, J.A., J. Aids, 5 (1992) 127.

    Google Scholar 

  27. 27

    Re, M.C., Furlini, G., Cenacchi, G., Preda, P. and La Placa, M., Microbiologica, 14 (1991) 149.

    Google Scholar 

  28. 28

    Steffan, A.M., Lafon, M.E., Gendrault, J.L., Schweitzer, C., Poyer, C., Jaech, D. and Arnaud, J.P., Proc. Natl. Acad. Sci. USA., 89 (1992) 1582.

    Google Scholar 

  29. 29

    Green, D.F., Resnick, L. and Bourgoignie, J.J., Kidney Int., 41 (1992) 956.

    Google Scholar 

  30. 30

    Moses, A.V., Bloom, F.E., Pauza, C.D. and Nelson, J.A., Proc. Natl. Acad. Sci. USA, 90 (1993) 1474.

    Google Scholar 

  31. 31

    Ades, E.W., Nicholson, J.K.A., Browning, S.W. and Comans, T.W., Pathobiology, 60 (1993) 330.

    Google Scholar 

  32. 32

    Teitel, J.M., Shore, A., Read, S.E. and Schiavone, A., J. Infect. Dis., 160 (1989) 551.

    Google Scholar 

  33. 33

    Lafon, M.E., Steffan, A.M., Gendrult, J.L., Klain-Soyer, C., Gloeckler-Tondre, L., Royer, C. and Kirn, A., Aids Res. Hum. Retroviruses, 8 (1992) 1567.

    Google Scholar 

  34. 34

    Dhawan, S., Weeks, B.S.M., Soderland, C., Schnaper, W., Toro, L.A., Asthana, S.P., Hewlett, I.K., Stetler-Stevenson, W.G., Yamada, S.S., Yamada, K.M. and Meltzer, S., J. Immunol., 154 (1995) 422.

    Google Scholar 

  35. 35

    Conaldi, P.G., Serra, C., Dolei, A., Basolo, F., Falcone, V., Mariani, G., Speziale, P. and Toniolo, A., J. Med. Virol., in press.

  36. 36

    Scheglovitova, O., Capobianchi, M.R., Antonelli, G., Guanmu, D. and Dianzani, F., Arch. Virol., 132 (1992) 267.

    Google Scholar 

  37. 37

    Scheglovitova, O., Scanio, V., Fais, S., Papadia, S., Abbate, I., Castilletti, C., Dianzani, F. and Capobianchi, M.R., Arch. Virol., 140 (1995) 951.

    Google Scholar 

  38. 38

    Abbate, I., Capobianchi, M.R., Castilletti, C., Scheglovitova, O., Gentile, M., Scanio, V., Barresi, C., Ficociello, B., Papadia, S. and Dianzani, F., Cytokine, 7 (1995) 659.

    Google Scholar 

  39. 39

    Yahi, N., Baghdiguian, S., Moreau, H. and Fantini, J., J. Virol., 66 (1992) 4848.

    Google Scholar 

  40. 40

    Dalgleish, A., Nature Med., 1 (1995) 881.

    Google Scholar 

  41. 41

    Fais, S., Capobianchi, M.R., Abbate, I., Castilletti, C., Gentile, M., Cordiali Fei, P., Ameglio, F. and Dianzani, F., Aids, 9 (1995) 329.

    Google Scholar 

  42. 42

    Faure, E., Yahi, N., Zider, A., Cavard, C., Champion, S. and Fantini, J., Virus Res., 34 (1994) 1.

    Google Scholar 

  43. 43

    Cameron, P.U., Freudenthel, P.S., Barker, J.M., Geltzer, S., Inaba, K. and Steinman, R.M., Science, 257 (1992) 383.

    Google Scholar 

  44. 44

    Kunsch, C. and Wigdahl, B., Virology, 173 (1989) 715.

    Google Scholar 

  45. 45

    Lafon, M.E., Steffan, A.M., Royer, C., Jaeck, D., Beretz, A., Kirn, A. and Gendrault, J.L., Aids, 8 (1994) 747.

    Google Scholar 

  46. 46

    Klaassen, R.J.L., Mulder, J.W., Vlekke, A.B.J., Schnattenker, J.K.M., Weigel, H.M., Lange, J.M.A. and Von dem Borne, A.E.G.K., Clin. Exp. Immunol. 81 (1990) 7.

    Google Scholar 

  47. 47

    Wangel, A.G., Temonen, M., Brummer-Korvenkontio, M. and Vaheri, A., Clin. Exp. Immunol., 90 (1992) 13.

    Google Scholar 

  48. 48

    Borghi, M.O., De Santis, C., Barcellini, W., Lopalco, L., Fain, C., Lazzarin, A., Siccardi, A.G., Meroni, P.L., Zanussi, C. and Beretta, A., J. Aids, 6 (1993) 1114.

    Google Scholar 

  49. 49

    Jaffe, E.A., Transplant. Res., 12 (1980) 49.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Dianzani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dianzani, F., Capobianchi, M.R. HIV infection of endothelial cells. Perspectives in Drug Discovery and Design 5, 61–72 (1996). https://doi.org/10.1007/BF02174002

Download citation

Keywords

  • Endothelial Cell
  • Human Umbilical Vein Endothelial Cell
  • Microvascular Endothelial Cell
  • Endothelial Cell Proliferation
  • Brain Capillary