Skip to main content
Log in

Supersonic molecular beams production and temperature distribution in free expanding jets

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si descrive un apparecchio per la produzione di fasci molecolari supersonici nel quale, facendo uso di stazioni di pompaggio, a diffusione e criogenico, relativamente modeste, si può produrre un flusso continuo di molecole di Argon di4 · 10 18 molecole sterad−1 sec−1 in un ambiente in cui la pressione di fondo è mantenuta inferiore a10 −6 mmHg. Vengono riportate misure di intensità del fascio, a diversi valori della pressione nell'ugello, in funzione della distanza ugello-primo collimatore e del diametro del primo collimatore. I risultati vengono confrontati con le teorie esistenti e dal confronto si ottiene informazioni sulla distribuzione della temperatura radiale nei getti in espansione libera.

Summary

A supersonic molecular beam production system is described in which a continuous flux of Argon molecules can be produced as high as4 · 10 18 molecules sterad−1 sec−1 in a vessel where the background pressure can be kept below10 −6 mmHg using relatively little cryo and diffusion pumping facilities. The beam intensity is measured at different stagnation pressures as a function of nozzle-skimmer separation and skimmer diameter. The results are compared with the existing theories, and information is obtained on the radial temperature distribution in the free expanding jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Kantrowitz et al., Rev. Sci. Instr.,22, 328, 1951.

    Google Scholar 

  2. G. B. Kistiakowsky et al., Rev. Sci. Instr.,22, 333, 1951.

    Google Scholar 

  3. E. W. Becker et al., Zeit. für Nat.,9, 975, 1954.

    Google Scholar 

  4. E. Knuth, Appl. Mech. Rev.,17, 751, 1964.

    Google Scholar 

  5. V. B. Leonas, Usp. Fiz. Nauk.,82, 287, 1964.

    Google Scholar 

  6. J. B. Anderson et al., Adv. in Chem. Phys.,10, 275, 1966.

    Google Scholar 

  7. H. Pauly et al., Adv. Atom. Mol. Phys.,1, 195, 1965.

    Google Scholar 

  8. J. B. French, AIAA Journal,3, 999, 1965.

    Google Scholar 

  9. G. Scoles et al., Physica,31, 233, 1965.

    Google Scholar 

  10. J. B. French et al., Rarefied Gas Dynamics, V Symp., Oxford, p. 1385, 1966, Academic Press, New York, 1967.

    Google Scholar 

  11. J. B. Anderson et al., Phys. of Fluids,8, 780, 1965.

    Google Scholar 

  12. S. Dushman et al.,Scientific foundation of vacuum technique, J. Wiley and Sons, II ed., p. 94, 1962.

  13. J. Decker et al., Rev. Sci. Instr.,34, 96, 1963.

    Google Scholar 

  14. K. Bier et al., Rarefied Gas Dynamics, IV Symp., Toronto, p. 260, 1964, Academic Press, New York, 1966.

    Google Scholar 

  15. R. F. Brown et al., Rar. Gas Dynamics, V Symp., Oxford, p. 1407, 1966, Academic Press, New York, 1967.

    Google Scholar 

  16. F. T. Green et al., J. Chem. Phys.,40, 1488, 1964.

    Google Scholar 

  17. J. B. French, AGARD-ograph 112 University of Toronto, April 1966.

  18. J. P. Valleau et al., Can. J. of Chem.,43, 6, 1965.

    Google Scholar 

  19. R. Campargue, Gas Dyn., IV Symp., Toronto, 1964, Acad. Press, New York, 1966.

    Google Scholar 

  20. J. H. Mc Ginn, Rar. Gas Dynamics, V Symp., Oxford, p. 1455, 1966, Acad. Press, New York, 1967.

    Google Scholar 

  21. O. Hagena et al., Rar. Gas Dynamics, V Symp., Oxford, p. 1369, 1966, Acad. Press, New York, 1967.

    Google Scholar 

  22. J. B. Fenn et al., Rar. Gas Dynamics, IV Symp., Toronto, p. 311, 1964, Acad. Press, New York, 1966.

    Google Scholar 

  23. N. Abuaf et al., Rar. Gas Dynamics, V Symp., Oxford, p. 1317, 1966, Acad. Press, New York, 1967.

    Google Scholar 

  24. B. B. Hamel et al., Phys. of Fluids,9, 829, 1966.

    Google Scholar 

  25. R.H. Edwards et al., Rar. Gas Dynamics, V Symp., Oxford, p. 819, 1966, Acad. Press, New York, 1967.

    Google Scholar 

  26. E.L. Knuth, Report no. 64-53 California University, Los Angeles, 1964.

    Google Scholar 

  27. P. V. Marrone, Phys. of Fluids,10, 521, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scoles, G., Torello, F. Supersonic molecular beams production and temperature distribution in free expanding jets. Meccanica 3, 20–27 (1968). https://doi.org/10.1007/BF02173989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02173989

Keywords

Navigation