Advertisement

Experientia

, Volume 8, Issue 5, pp 171–182 | Cite as

Molekülgrößenbestimmungen an makromolekularen Stoffen (Kritik und Vergleich der Methoden)

  • G. V. Schulz
Article

Summary

A survey is given of the most important methods for determination of molecular weight (osmotic pressure, ultracentrifuge and diffusion, light scattering, viscosity). All the methods require an extrapolation to zero concentration in order to use equations valid for ideal solutions. Furthermore the polymolecularity of the examined substance must be considered, since each method yields a characteristic average of molecular weight differing from the others. The present limits of the methods are given and their results compared.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Schulz, Z. physik. Chem. [B]32, 27 (1936);47, 155 (1940); J. makromol. Chem.1, 131 (1943).Google Scholar
  2. 1.
    G. V. Schulz undA. Dinglinger, Z. physik. Chem.43, 47 (1939) (Polystyrol II).Google Scholar
  3. 1.
    W. Kern, Ber. dtsch. chem. Ges.68, 1439 (1935).Google Scholar
  4. 2.
    W. D. Lansing undE. O. Kraemer, J. Amer. Chem. Soc.57, 1369 (1935).Google Scholar
  5. 1.
    R. E. Montonna undT. L. Jilk, J. physic. Chem.45, 1374 (1941).Google Scholar
  6. 2.
    S. R. Carter undB. R. Record, J. Chem. Soc.1939, 660, 664.Google Scholar
  7. 3.
    G. V. Schulz, Z. physik. Chem. [A]176, 317 (1936).Google Scholar
  8. 3a.
    F. M. Fuoss undM. Mead, J. physic. Chem.47, 59 (1943).Google Scholar
  9. 3b.
    J. Jullander, Ark. Kem. Mineral. Geol. [A]21, 3/4, Teil, Nr. 8 (1946).Google Scholar
  10. 3c.
    H. Hellfritz, Makromol. Chem.,7, 184 (1951).Google Scholar
  11. 4.
    N. F. Burk, J. Biol. Chem.98, 353 (1932).Google Scholar
  12. 1a.
    G. V. Schulz, Z. physik. Chem.176, 317 (1936).Google Scholar
  13. 2a.
    P. J. Flory, J. Amer. Chem. Soc.65, 372 (1943).Google Scholar
  14. 1b.
    G. V. Schulz, Z. physik. Chem.176, 317 (1936).Google Scholar
  15. 2b.
    P. J. Flory, J. Amer. Chem. Soc.65, 372 (1943).Google Scholar
  16. 1.
    A. Dobry, J. Chim. Phys.32, 50 (1935); Koll. Z.81, 190 (1937).Google Scholar
  17. 1a.
    Vgl. ferner:H. Staudinger undG. V. Schulz, Ber. dtsch. Chem. Ges.70, 1577 (1937).Google Scholar
  18. 2.
    G. V. Schulz undH. Doll, Z. Elektrochem.56 (1952), im Druck.Google Scholar
  19. 3.
    G. V. Schulz, Z. Naturforschg.2a, 27, 411 (1947).Google Scholar
  20. 3a.
    M. L. Huggins, J. phys. Colloid Chem.52, 248 (1948).Google Scholar
  21. 1.
    G. V. Schulz, Z. Naturforschg.2a, 27, 411 (1947).Google Scholar
  22. 1a.
    M. L. Huggins, J. phys. Colloid Chem.52, 248 (1948).Google Scholar
  23. 2.
    H. Porzehl undH. H. Weber, Z. Naturforschg.5b, 75 (1950).Google Scholar
  24. 3.
    Vgl. TheSvedberg undK. O. Pedersen,Die Ultrazentrifuge (Steinkopf, Dresden und Leipzig 1940).Google Scholar
  25. 1.
    Vgl. TheSvedberg undK. O. Pedersen,Die Ultrazentrifuge (Steinkopf Dresden und Leipzig 1940).Google Scholar
  26. 1.
    J. Hengstenberg undG. V. Schulz, Makromol. Chem.2, 5 (1948).Google Scholar
  27. 2.
    Vgl.: TheSvedberg undK. O. Pedersen,Die Ultrazentrifuge (Steinkopf, Dresden und Leipzig 1940).Google Scholar
  28. 1.
    Vgl. TheSvedberg undK. O. Pedersen,Die Ultrazentrifuge (Steinkopf, Dresden und Leipzig 1940).Google Scholar
  29. 2.
    J. Hengstenberg undG. V. Schulz, Makromol. Chem.2, 5 (1948).Google Scholar
  30. 3.
    Nils Gralén, Diss. (Uppsala 1944).Google Scholar
  31. 1.
    Nils Gralén, Diss. (Uppsala 1944).Google Scholar
  32. 2.
    J. Jullander, Archiv Chem. Mineral. Geol. [A]21, 1 (1946).Google Scholar
  33. 1.
    Nach E. J. Cohn undJ. J. Edsale,Aminoacids, Pepsids and Proteins (Reinhold, New York 1943).Google Scholar
  34. 2a.
    J. Hengstenberg undG. V. Schulz, Makromol. Chem.2, 5 (1948).Google Scholar
  35. 1.
    R. S. Stein undP. Doty, J. Amer. Chem. Soc.68, 159 (1946).Google Scholar
  36. 2.
    G. V. Schulz, Z. physik. Chem.194, 1 (1944).Google Scholar
  37. 3.
    P. Debye undP. P. Debye, J. appl. Phys.15, 338 (1944).Google Scholar
  38. 1.
    P. M. Doty, B. H. Zimm undH. Mark, J. Chem. Phys.13, 159 (1945).Google Scholar
  39. 2.
    P. Putzeys undJ. Brosteaux, Trans. Far. Soc.31, 1314 (1935).Google Scholar
  40. 3.
    Th. Bücher, Biochem. biophys. acta1, 466, 477 (1947).Google Scholar
  41. 1.
    G. V. Schulz, Z. physik. Chem.194, 1 (1944).Google Scholar
  42. 2.
    H. J. Staudinger undI. Haenel-Immendörfer, J. makromol. Chem.1 (1943) 185.Google Scholar
  43. 3.
    P. M. Doty, B. H. Zimm undH. Mark, J. Chem. Phys.13, 159 (1945).Google Scholar
  44. 4.
    G. Oster, P. M. Doty undB. H. Zimm, J. Am. Chem. Soc.69, 1193 (1947).Google Scholar
  45. 1.
    Vgl. hierüber:H. Stuart, Angew. Chem.62, 351 (1950).Google Scholar
  46. 2.
    G. Oster, P. M. Doty undB. H. Zimm, J. Amer. Chem. Soc.69, 1193 (1947).Google Scholar
  47. 3.
    Das gilt allerdings nur für den Bereich, in dem die Rayleighsche Gleichung gilt. Für größere Teilchen verschiebt sich der Durchschnitt in Richtung des Zahlendurchschnitts.Google Scholar
  48. 1.
    G. V. Schulz undF. Blaschke, J. prakt. Chem.148, 136 (1941).Google Scholar
  49. 1a.
    G. V. Schulz undE. Husemann, J. makromol. Chem.1, 197 (1943); Z. physik. Chem. [B]52, 1 (1942).Google Scholar
  50. 1b.
    G. V. Schulz undG. Sing, J. prakt. Chem.161, 161 (1943).Google Scholar
  51. 2.
    G. V. Schulz undF. Blaschke, J. prakt. Chem.158, 136 (1941).Google Scholar
  52. 2a.
    G. V. Schulz, F. Blaschke undE. Husemann, J. makromol. Chem.1, 197 (1943); Z. physik. Chem. [B]52, 1 (1942).Google Scholar
  53. 2b.
    G. V. Schulz, F. Blaschke undG. Sing, J. prakt. Chem.161, 161 (1943).Google Scholar
  54. 1.
    R. Houwink, J. prakt. Chem.157, 15 (1940).Google Scholar
  55. 2.
    H. Staudinger undH. Warth, J. prakt. Chem.155, 261 (1940).Google Scholar
  56. 3.
    G. V. Schulz, Koll. Z.115, 90 (1949).Google Scholar
  57. 4.
    H. Batzer, Makromol. Chem.5, 5 (1950).Google Scholar
  58. 1.
    G. V. Schulz, Makromol. Chem.3, 146 (1949).Google Scholar
  59. 2.
    P. J. Flory, J. Amer. Chem. Soc.65, 372 (1943).Google Scholar
  60. 1.
    G. V. Schulz undA. Dinglinger, J. prakt. Chem.158, 137 (1941).Google Scholar
  61. 2.
    J. H. Baxendale, S. Bywater undM. G. Evans, J. polymer. Sci.1, 237 (1946).Google Scholar
  62. 3.
    J. Bischoff, Diss. (Lüttich 1950).Google Scholar
  63. 4.
    G. Meyerhoff undG. V. Schulz, Makromol. Chem.7, 294 (1951).Google Scholar
  64. 1.
    H. Staudinger, W. Kern undCh. D'Herrera, Ber. dtsch. chem. Ges.68, 2346 (1935); vgl. auchJ. V. Breitenbach undA. J. Renner, Mh. Chem.81, 454 (1950).Google Scholar
  65. 2.
    G. V. Schulz, Z. physik. Chem. [B]47, 155 (1940);Google Scholar

Copyright information

© Birkhäuser Verlag 1952

Authors and Affiliations

  • G. V. Schulz
    • 1
  1. 1.Institut für physikalische Chemie der Universität MainzMainz

Personalised recommendations