Skip to main content
Log in

Fractal wavelet dimensions and localization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we want to give a new definition of fractal dimensions as small scale behavior of theq-energy of wavelet transforms. This is a generalization of previous multi-fractal approaches. With this particular definition we will show that the 2-dimension (=correlation dimension) of the spectral measure determines the long time behavior of the time evolution generated by a bounded self-adjoint operator acting in some Hilbert space ℋ. It will be proved that for φ, ψ∈ℋ we have

$$\mathop {\lim \inf }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ + (2)$$

and that

$$\mathop {\lim \sup }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ - (2),$$

wherek ±(2) are the upper and lower correlation dimensions of the spectral measure associated with ψ and ϕ. A quantitative version of the RAGE theorem shall also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  2. Grossman, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I: General results. J. Math. Phys.26, 2473–2479 (1985)

    Google Scholar 

  3. Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  4. Meyer, Y.: Ondelettes et Opèrateurs I&II&III. Paris: Hermann 1990

    Google Scholar 

  5. Holschneider, M.: Localization Properties of Wavelet Transforms. J. Math. Phys.,34(7), 3227–3244 (1993)

    Google Scholar 

  6. Holchneider, M.: On the wavelet transformation of fractal objects. J. Stat. Phys.50, 953–993 (1988)

    Google Scholar 

  7. Arnéodo, A., Grasseau, G., Holschneider, M.: On the wavelet transform of multifractals. Phys. Rev. Lett.61, 2281–2284 (1988)

    Google Scholar 

  8. Holschneider, M., Tchamitchian, Ph.: Pointwise regularity of Riemanns “nowhere differentiable” function. Invent. Math.105, 157–175 (1991)

    Google Scholar 

  9. Jaffard, S.: Estimations Hölderiennes ponctuelles des fonctions au moyen de leurs coefficients d'ondelettes. CRAS Sèr. I308, 7 (1989)

    Google Scholar 

  10. Holschneider, M.: More on the analysis of local regularity through wavelets. Accepted for publication in J. Stat. Phys.

  11. Holschneider, M.: Functional Calculus using Wavelet Transforms. Accepted for publication in J. Math. Phys.

  12. Holschneider, M.: L'analyse d'objets fractals et leur transforme en ondelettes. These de doctorat, Universit de Provence (Aix-Marseille I), 12 Octobre 1988

  13. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica8D, 435–444 (1983)

    Google Scholar 

  14. Ghez, J.M., Orlandini, E., Tesi, M.C., Vaienti, S.: Dynmical Integral Transform on Fractal Sets and the Computation of Entropy. To appear in Physica D

  15. Muzy, J.F., Barcy, E., Arneodo, A.: Wavelets and Multifractal Formalism for Singular Signals. Phys. Rev. Lett.67, 3515–3518 (1992)

    Google Scholar 

  16. Ketzmerick, R., Petschel, G., Geisel, T.: Slow Decay for Temporal Correlations in Quantum Systems with Cantor Spectra. Preprint, Univ. Frankfurt

  17. Strichartz, R.: Fourier asymptotics of fractal measures. J. Funct. Anal.89, 154 (1990)

    Google Scholar 

  18. Guarneri, I.: On an Estimate Concerning Quantum Diffusion in the Presence of a Fractal Spectrum. To appear in Europhys. Lett.

  19. Avron, J., Simon, B.: Transient and Recurrent Spectrum. J. Funct. Anal.43, 1 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoschneider, M. Fractal wavelet dimensions and localization. Commun.Math. Phys. 160, 457–473 (1994). https://doi.org/10.1007/BF02173424

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02173424

Keywords

Navigation