Skip to main content
Log in

GRISEA, a putative copper-activated transcription factor fromPodospora anserina involved in differentiation and senescence

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Podospora anserina is a filamentous fungus with a limited lifespan. Lifespan is controlled by both environmental and genetic factors. Using a combination of genetic and molecular approaches we have cloned one of these factors, gerontogenegrisea. The cloned wild-type copy ofgrisea complements the altered morphological characteristics (e.g., colony and ascospore color), the defect in gametangia development, and the increased lifespan of the pleiotropic mutantgrisea. A molecular analysis revealed thatgrisea is a discontinuous gene with a single intron. The deduced amino acid sequence shows significant homology to MAC1, ACE1 and AMT1, indicating that GRISEA, like the proteins fromSaccharomyces cerevisiae (MAC1 and ACE1) andCandida glabrata (AMT1), codes for a copperactivated transcription factor. This conclusion is consistent with the pleiotropic nature of thegrisea phenotype. We suggest that the gerontoprotein GRISEA is one component of a transcription apparatus involved in the genetic control of morphogenesis and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins RA, Lambowitz AM (1985) General method for cloningNeurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol 5: 2272–2278

    Google Scholar 

  • Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) TheFET3 gene ofS. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76: 403–410

    Google Scholar 

  • Bandy B, Davidson AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging. Free Radical Biol Medicine 8: 523–539

    Google Scholar 

  • Belcour L, Begel O, Mosse MO, Vierny C (1981) Mitochondrial DNA amplification in senescent cultures ofPodospora anserina, Curr Genet 3: 13–21

    Google Scholar 

  • Belcour L, Begel O, Picard M (1991) A site-specific deletion in mitochondrial DNA ofPodospora is under the control of nuclear genes. Proc Natl Acad Sci USA 88: 3579–3583

    Google Scholar 

  • Brody H, Griffith J, Cuticchia J, Arnold J, Timberlake WE (1991) Chromosome-specific recombinant DNA libraries from the fungusAspergillus nidulans. Nucleic Acids Res 19: 3105–3109

    Google Scholar 

  • Dancis A, Yuan DS, Halle D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterization of a copper transport protein inS. cerevisiae: an unexpected role for copper in iron transport. Cell 76: 393–402

    Google Scholar 

  • Davis K (1993) Cloning the Menkes disease gene. Nature 362: 98

    Google Scholar 

  • Esser K (1974)Podospora anserina. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 531–551

    Google Scholar 

  • Esser K (1984) Genetic control of ageing: the mobile intron model. In: Bergener M, Ermini M, Stähelin HB (eds) The 1984 Sandoz lectures in gerontology. Academic Press, London, pp 3–20

    Google Scholar 

  • Esser K, Kuenen R (1967) Genetics of fungi. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Esser K, Tudzynski P (1980) Senescence in fungi. In: Thimann KV (ed) Senescence in plants. CRC Press, Boca Raton, pp 67–83

    Google Scholar 

  • Fürst P, Hamer D (1989) Cooperative activation of a eukaryotic transcription factor: interaction between Cu(I) and yeast ACE1 protein. Proc Natl Acad Sci USA 86:5267–5271

    Google Scholar 

  • Halliwell B, Gutteridge MC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    Google Scholar 

  • Harman D (1983) Free radical theory of aging: consequences of mitochondrial aging. Age 6:86–94

    Google Scholar 

  • Hassett R, Kosman DJ (1995) Evidence for Cu(II) reduction as a component of copper uptake bySaccharomyces cerevisiae. J Biol Chem 270:128–134

    Google Scholar 

  • Hermanns J, Osiewacz HD (1994) Three mitochondrial unassigned open reading frames ofPodospora anserina represent remnants of a viral-type RNA polymerase. Curr Genet 25:150–157

    Google Scholar 

  • Hu S, Fürst P, Hamer D (1990) The DNA and copper binding functions of ACE1 are interdigitated within a single domain. New Biol 2:544–555

    Google Scholar 

  • Javerzat JP, Jacquier C, Barreau C (1993) Assignment of linkage groups to electrophoretically-separated chromosomes of the fungusPodospora anserina. Curr Genet 24:219–222

    Google Scholar 

  • Johnson TE, Arking R, Bertrand H, Driscoll M, Esser K, Griffiths AJF, Harley CB, Jazwinski SM, Kirkwood TBL, Osiewacz HD (1994) Research on diverse model systems and the genetic basis of aging and longevity. In: Esser K, Martin GM (eds) Molecular aspects of aging. John Wiley and Sons, Chichester, pp 109–128

    Google Scholar 

  • Jungmann J, Reins H-A, Lee J, Romeo A, Hassett R, Kosman D, Jentsch S (1993) MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J 12:5051–5056

    Google Scholar 

  • Kim TK, Roeder R (1993) Transcriptional activation in yeast by the proline-rich activation domain of human CTF-1. J Biol Chem 268:20866–20869

    Google Scholar 

  • Kück U (1989) Mitochondrial DNA rearrangements inPodospora anserina. Exp Mycol 13:111–120

    Google Scholar 

  • Kück U, Stahl U, Esser K (1981) Plasmid-like DNA is part of the mitochondrial DNA inPodospora anserina. Curr Genet 3:151–156

    Google Scholar 

  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous gene inPodospora anserina. Curr Genet 9:373–382

    Google Scholar 

  • Marbach K, Fernandez-Larrea J, Stahl U (1994) Reversion of a long-living, undifferentiated mutant ofPodospora anserina by copper. Curr Genet 26:184–186

    Google Scholar 

  • Marcou D (1961) Notion de longevité et nature cytoplasmatique du determinant de la senescence chez quelques champignons. Ann Sci Nat Bot 12:653–764

    Google Scholar 

  • Osiewacz HD (1990) Molecular analysis of aging processes in fungi. Mutat Res 237:1–8

    Google Scholar 

  • Osiewacz HD (1994a) Aging and genetic instabilities. In: Esser K, Martin GM (eds) Molecular aspects of aging. John Wiley and Sons, Chichester, pp 29–44

    Google Scholar 

  • Osiewacz HD (1994b) A versatile shuttle vector for the efficient construction of genomic libraries and for cloning of fungal genes. Curr Genet 26:87–90

    Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid ofPodospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8:299–305

    Google Scholar 

  • Osiewacz HD, Hermanns J (1992) The role of mitochondrial rearrangements in aging and human diseases. Clin Exp Res 4:273–286

    Google Scholar 

  • Osiewacz HD, Clairmont A, Huth M (1990) Electrophoretic karyotype of the ascomycetePodospora anserina. Curr Genet 18:481–483

    Google Scholar 

  • Osiewacz HD, Skaletz A, Esser K (1991) Integrative transformation of the ascomycetePodospora anserina: identification of the mating-type locus on chromosome VII of electrophoretically separated chromosomes. Appl Microbiol Biotechnol 35:38–45

    Google Scholar 

  • Prillinger H, Esser K (1977) The phenoloxidases of the ascomycetePodospora anserina. XIII. Action and interaction of genes controlling the formation of laccase. Mol Gen Genet 156:333–345

    Google Scholar 

  • Punt P, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Transformation ofAspergillus based on the hygromycin B resistance marker fromEscherichia coli. Gene 56:117–124

    Google Scholar 

  • Rattan SIS (1985) Beyong the present crisis in gerontology. Bioessays 2:226–228

    Google Scholar 

  • Richter C (1994) Oxidative damage to mitochondrial DNA and its relationship to aging. In: Esser K, Martin GM (eds) Molecular aspects of aging. John Wiley and Sons, Chichester, pp 99–108

    Google Scholar 

  • Ridder R, Osiewacz HD (1992) Sequence analysis of the gene coding for glyceraldehyde-3-phosphate dehydrogenase (gpd) ofPodospora anserina: use of homologous regulatory sequences to improve transformation efficiency. Curr Genet 21:207–213

    Google Scholar 

  • Rizet G (1953) Sur l'impossibilité dobtenir la multiplication végetative ininterrompue et illimité de l'ascomycetePodospora anserina. C R Acad Sci Paris 237:838–855

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Press, Cold Spring Harbor, New york

    Google Scholar 

  • Silar P, Picard M (1994) Increased longevity of EF-1α high-fidelity mutants inPodospora anserina. J Mol Biol 235:231–236

    Google Scholar 

  • Sohal RS, Orr WC (1994) Is oxidative stress a causal factor in aging? In: Esser K, Martin GM (eds) Molecular aspects of aging. John Wiley and Sons, Chichester, pp 109–128

    Google Scholar 

  • Stadtman E (1994) The status of oxidatively modified proteins as a marker of aging. In: Esser K, Martin GM (eds) Molecular aspects of aging. John Wiley and Sons, Chichester, pp 129–144

    Google Scholar 

  • Suomalainen A, Kaukonen J, Amati P, Timonen R, Haltia M, Weissenbach J, Zeviani M, Somer H, Peltonen L (1995) An autosomal locus predisposing to deletions of mitochondrial DNA. Nature Genetics 9:146–151

    Google Scholar 

  • Swartz HM, Mäder K (1994) Free radicals in aging: theories, facts, and artifacts. In: Esser K, Martin GM (eds) Molecular aspects of aging. John Wiley and Sons, Chichester, pp 77–98

    Google Scholar 

  • Thiele D (1988) ACE1 regulates expression of theSaccharomyces cerevisiae metallothionein gene. Mol Cell Biol 6:1158–1163

    Google Scholar 

  • Tudzynski P, Esser K (1979) Chromosomal and extrachromosomal control of senescence in the ascomycetePodospora anserina. Mol Gen Genet 173:71–84

    Google Scholar 

  • Tudzynski P, Stahl U, Esser K (1982) Development of a eukaryotic cloning system inPodospora anserina. I. Long-lived mutants as potential recipients. Curr Genet 6:219–222

    Google Scholar 

  • Wallace D (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases. Science 256:628–632

    Google Scholar 

  • Welch J, Fogel S, Buchmann C, Karin M (1989) TheCUP2 gene product regulates the expression of theCUP1 gene, coding for yeast metallothionein. EMBO J 8:255–260

    Google Scholar 

  • Xiao H, Lis JT, Xiao H, Greenblatt J, Friesen, JD (1994) The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation. Nucleic Acids Res 11:1966–1973

    Google Scholar 

  • Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339:309–311

    Google Scholar 

  • Zhou P, Thiele DJ (1991) Isolation of a metal-activated transcription factor gene fromCandida glabrata by complementation inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 88:6112–6116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Cerdá-Olmedo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osiewacz, H.D., Nuber, U. GRISEA, a putative copper-activated transcription factor fromPodospora anserina involved in differentiation and senescence. Molec. Gen. Genet. 252, 115–124 (1996). https://doi.org/10.1007/BF02173211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02173211

Key words

Navigation