Skip to main content
Log in

Gene transfer and manipulation in the thermophilic cyanobacteriumSynechococcus elongatus

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

DNA can be introduced into the thermophilic cyanobacteriumSynechococcus elongatus by electroporation or conjugation. Its genome can be readily manipulated through integrative transformation or by using promiscuous RSF1010-derived plasmids that can be transferred unaltered betweenEscherichia coli andSynechococcus elongatus. These vectors can therefore be used for in vivo studies of cyanobacterial proteins in both mesophilic and thermophilic cyanobacterial backgrounds. As a preliminary step towards the analysis of structure-function relationships of photosystem I (PSI) from this thermophile, the genes encoding the PSI subunits PsaF, PsaL, and PsaK were inactivated and shown to be non-essential inS. elongatus. In addition, PSI reaction centres were extracted from apsaL strain exclusively as monomeric complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry BA, Boerner RJ, de Paula JC (1994) The use of cyanobacteria in the study of the structure and function of photosystem II. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 217–257

    Google Scholar 

  • Blum II, Beier H, Gross HJ (1987) A rapid method for silver staining of proteins and nucleic acids. Electrophoresis 8:93–98

    Google Scholar 

  • Bruns BU, Briggs WR, Grossmann AR (1989) Molecular characterization of phycobilisome regulatory mutants ofFremyella displosiphon. J Bacteriol 171:901–908

    Google Scholar 

  • Buzby JS, Porter RD, Stevens SE Jr (1983) Plasmid transformation inAgmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties. J Bacteriol 154:1446–1450

    Google Scholar 

  • Buzby JS, Porter RD, Stevens SE Jr (1985) Expression of theEscherichia coli lacZ gene on a plasmid vector in a cyanobacterium. Science 230:805–807

    Google Scholar 

  • Castenholz RW (1981) Isolation and cultuvation of thermophilic cyanobacteria. In: Starr MP, Stolp H, Tüper HG, Balows A, Schlegel HG (eds) The Prokaryotes, vol 1. Springer Verlag, Berlin, pp 236–246

    Google Scholar 

  • Castenholz RW (1988) Culturing methods for cyanobacteria. Methods Enzymol 167:68–92

    Google Scholar 

  • Castenholz RW, Gherna GL, Lewin R, Rippka R, Waterbury JB, Whitton BA (1989) Oxygenic photosynthetic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1710–1805

    Google Scholar 

  • Chiang GG, Schaefer MR, Grossmann AR (1992) Transformation of the filamentous cyanobacteriumFremyella diplosiphon by conjugation or electroporation. Plant Physiol Biochem 30:315–325

    Google Scholar 

  • Chitnis VP, Chitnis PR (1993) PsaL subunit is required for the formation of photosystem I trimers in the cyanobacteriumSynechocystis sp. PCC 6803. FEBS Lett 336:330–334

    Google Scholar 

  • Chitnis VP, Xu Q, Yu L, Golbeck JH, Nakamoto HH, Xie DL, Chitnis PR (1993) Targeted inactivation of the genepsaL encoding a subunit of photosystem I of the cyanobacteriumSynechocystis sp. PCC 6803. J Biol Chem 268:11678–11684

    Google Scholar 

  • Elhai J (1993) Strong and regulated promoters in the cyanobacteriumAnabaena PCC 7120. FEMS Microbiol Lett 114:179–184

    Google Scholar 

  • Elhai J, Wolk PC (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68:119–138

    Google Scholar 

  • Golbeck JH (1994) Photosystem I. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 319–360

    Google Scholar 

  • Haselkorn R (1991) Genetic systems in cyanobacteria. Methods Enzymol 204:418–430

    Google Scholar 

  • Jekow P, Fromme P, Witt HT, Saenger W (1995) Photosystem I fromSynechococcus elongatus: preparation and crystallization of monomers with varying subunit composition. Biochim Biophys Acta 1229:115–120

    Google Scholar 

  • Koike H, Ikeuchi M, Hijama T, Inoue Y (1989) Identification of photosystem I components from the cyanobacteriumSynechococcus vulcanus by N-terminal sequencing. FEBS Lett 235:257–263

    Google Scholar 

  • Kondratieva EN, Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 11635–11708

    Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT, Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6Å resolution. Nature 361:326–330

    Google Scholar 

  • Marraccini P, Bulteau S, Cassier-Chauvat C, Mermet-Bouvier P, Chauvat F (1993) A conjugative plasmid vector for promoter analysis in several cyanobacteria of the generaSynechococcus orSynechocystis. Plant Mol Biol 23:905–909

    Google Scholar 

  • Mermet-Bouvier P, Chauvat F (1994) A conditional expression vector for the cyanobacteriaSynechocystis sp. strains PCC 6803 and PCC 6714 orSynechococcus sp. strains PCC 7942 and PCC 6301. Curr Microbiol 28:145–148

    Google Scholar 

  • Mermet-Bouvier P, Cassier-Chauvat C, Marraccini P, Chauvat F (1993) Transfer and replication of RSF1010-derived plasmids in several cyanobacteria of the generaSynechocystis andSynechococcus. Curr Microbiol 27:323–327

    Google Scholar 

  • Miyake M, Kotani H, Asada Y (1992) Isolation and identification of a restriction enzyme,SelI from a cyanobacterium,Synechococcus elongatus. Nucleic Acid Res 22:2605

    Google Scholar 

  • Mühlenhoff U, Haehnel W, Witt HT, Hermann RG (1993) Genes encoding eleven subunits of photosystem I from the thermophilic cyanobacteriumSynechococcus sp. Gene 127:71–78

    Google Scholar 

  • Porter RD (1988) DNA transformation. Methods Enzymol 167:703–727

    Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Google Scholar 

  • Pollard-Knight D, Read CA, Downes MJ, Howard LA, Leadbetter MR, Pheby SA, McNaughton E, Symes A, Brady MAW (1990) Nonradioactive nucleic acid detection detection by enhanced chemilumenescence using probes directly labelled with horse-radish peroxidase. Anal Biochem 185:84–89

    Google Scholar 

  • Powell B, Mergeay M, Christofi N (1989) Transfer of broad host-range plasmids to suphate-reducing bacteria. FEMS Lett 59:269–274

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rippka R, Waterbury JB, Stanier RY (1981) Isolation and purification of cyanobacteria: some general principles. In: Starr MP, Stolp H, Tüper HG, Balows A, Schlegel HG (eds) The Prokaryotes, vol 1. Springer Verlag, Berlin, p 212–220

    Google Scholar 

  • Rögner M, Mühlenhoff U, Boekema J, Witt HT (1990) Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacteriumSynechococcus sp. Size, shape and activity. Biochim Biophys Acta 1015:415–424

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-SDS-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Google Scholar 

  • Schatz GH, Witt HT (1984) Extraction and characterization of oxygen-evolving photosystem II complexes from a thermophilic cyanobacteriumSynechococcus spec. Photobiochem Photobiophys 7:1–14

    Google Scholar 

  • Shimizu T, Hijama T, Ikeuchi M, Koike H, Inoue Y (1990) Nucleotide sequence of thepsaC gene of the cyanobacteriumSynechococcus vulcanus. Nucleic Acid Res 18:3644

    Google Scholar 

  • Shimizu T, Hijama T, Ikeuchi M and Inoue Y (1992) Nucleotide sequence of thepsaA andpsaB genes encoding the photosystem I core proteins from the cyanobacteriumSynechococcus vulcanus. Plant Mol Biol 18:785–791

    Google Scholar 

  • Thiel T, Poo H (1989) Transformation of a filamentous cyanobacterium by electroporation. J Bacteriol 171:5743–5746

    Google Scholar 

  • Thiel T (1994) Genetic analysis of cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 581–611

    Google Scholar 

  • Vermaas WFJ (1994) Molecular-genetic approaches to study photosynthetic and respiratory electron transport in thylakoids from cyanobacteria. Biochim Biophys Acta 1187:181–186

    Google Scholar 

  • Vermaas WFJ, Rutherford AW, Hansson O (1988) Site-directed mutagenesis in photosystem II of the cyanobacteriumSynechocystis sp. PCC 6803: donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci USA 85:8477–8481

    Google Scholar 

  • Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods inSynechocystis 6803. Methods Enzymol 167:766–778

    Google Scholar 

  • Xu Q, Yu L, Chitnis VP, Chitnis PR (1994) Function and organisation of photosystem I in a cyanobacterial mutant that lacks PsaF and PsaJ subunits. J Biol Chem 269:3205–3211

    Google Scholar 

  • Yamaoka T, Satoh K, Katoh S (1978) Photosynthetic activites of a thermophilic blue-green alga. Plant Cell Physiol 19:943–954

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlenhoff, U., Chauvat, F. Gene transfer and manipulation in the thermophilic cyanobacteriumSynechococcus elongatus . Molec. Gen. Genet. 252, 93–100 (1996). https://doi.org/10.1007/BF02173209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02173209

Key words

Navigation