Skip to main content
Log in

SOM 1, a small new gene required for mitochondrial inner membrane peptidase function inSaccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

IMP1 encodes a subunit of the mitochondrial inner membrane peptidase responsible for the proteolytic processing of cytochrome oxidase subunit 2 (Cox2) and cytochromeb 2 (Cytb2). The molecular defect in animp1 mutation and the characterisation of a high-copy-number suppressor is described. A delection of the suppressor region causes respiration deficiency. The DNA sequence revealed three very small overlapping ORFs. Constructs which carried termination codons within the ORFs or lacked ATG initiation codons still retained complementing activity on a high-copy-number plasmid. Nevertheless, the possibility that the suppressor acts at DNA or RNA level could be excluded. Subcloning of the ORFs, complementation analysis in low-copy-number plasmids and transcript mapping identified the 222 bp ORF as the suppressor gene designatedSOM1. TheSOM1 gene is transcribed into a 375 bp polyadenylated RNA and the deduced amino acid sequence predicts a small protein of 8.4 kDa with no significant sequence similarity to known proteins. In thesom1 deletion mutant, proteolytic processing of the Cox2 precursor is prevented and Cytb2 is strongly reduced.SOM1 represents a new small gene which encodes a novel factor that is essential for the correct function of the Imp1 peptidase and/or the protein sorting machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer M, Behrens M, Esser K, Michaelis G, Pratje E (1994)PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast. Mol Gen Genet 245:272–278

    Google Scholar 

  • Behrens M, Michaelis G, Pratje E (1991) Mitochondrial inner membrane protease 1 ofSaccharomyces cerevisiae shows sequence similarity to theEscherichia coli leader peptidase. Mol Gen Genet 228:167–176

    Google Scholar 

  • Bennetzen JC, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    Google Scholar 

  • Boles E, Liebetrau W, Hofmann M, Zimmermann FK (1994) A family of hexosephosphate mutases inSaccharomyces cerevisiae. Eur J Biochem 220:83–96

    Google Scholar 

  • Bonnefoy N, Kermorgant M, Groudinsky O, Minet M, Slonimski PP, Dujardin G (1994) Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1mutation inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 91:11978–11982

    Google Scholar 

  • Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A (1994)enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J 13:5099–5112

    Google Scholar 

  • Dalbey RE, von Heijne G (1992) Signal peptidases in prokaryotes and eukaryotes — a new protease family. Trends Biochem Sci 17:474–478

    Google Scholar 

  • Glerum DM, Koerner TJ, Tzagoloff A (1995) Cloning and characterization ofCOX14, whose product is required for assembly of yeast cytochrome oxidase. J Biol Chem 270:15585–15590

    Google Scholar 

  • Hahne K, Haucke V, Ramage L, Schatz G (1994) One gene encodes two isoforms of NADH-cytochromeb5 reductase in different mitochondrial subcompartments. Cell 79:829–839

    Google Scholar 

  • Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166:557–580

    Google Scholar 

  • Hannavy K, Schatz G (1995) Protein import into mitochondria. In: Papa S, Tager JM (eds)Biochemistry of cell membranes. Birkhäuser Verlag, Basel, pp 55–74

    Google Scholar 

  • Henikoff S, Cohen EH (1984) Sequences responsible for transcription termination on a gene segment inSaccharomyces cerevisiae. Mol Cell Biol 4:1515–1520

    Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167

    Google Scholar 

  • Hinnebusch AG, Liebman SW (1991) Protein synthesis and translational control inSaccharomyces cerevisiae. In: Broach JR, Pringle J, Jones E (eds) The molecular and cellular biology of the yeastSaccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 627–735

    Google Scholar 

  • Hofmann M, Boles E, Zimmermann FK (1994) Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase. Eur J Biochem 221:741–747

    Google Scholar 

  • Holm C, Meeks-Wagner DW, Fangman WL, Botstein D (1986) A rapid, efficient method for isolating DNA from yeast. Gene 42:169–173

    Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) (1990) PCR protocols — a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

  • Kassenbrock CK, Cao N, Douglas MG (1996) Genetic and biochemical characterization of ISP6, a small mitochondrial outer membrane protein associated with the protein translocation complex. EMBO J 12:3023–3034

    Google Scholar 

  • Köhrer K, Domdey H (1991) Preparation of high molecular weight RNA. Methods Enzymol 194:398–401

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–684

    Google Scholar 

  • Lauermann V (1991) Ethanol improves the transformation efficiency of intact yeast cells. Curr Genet 20:1–3

    Google Scholar 

  • Liu H, Krizek J, Bretscher A (1992) Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 132:665–673

    Google Scholar 

  • McEwen JE, Cameron VL, Poyton RO (1985) A rapid method for isolation and screening of cytochromec oxidase-deficient mutants ofSaccharomyces cerevisiae. J Bacteriol 161:831–835

    Google Scholar 

  • Michaelis G, Mannhaupt G, Pratje E, Fischer E, Naggert J, Schweizer E (1982) Mitochondrial translation products in nuclear respiration-deficient pet mutants ofSaccharomyces cerevisiae. In: Slonimski PP, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 311–321

    Google Scholar 

  • Moehle CM, Aynardi MW, Kolodny MR, Park FJ, Jones EW (1987) Protease B ofSaccharomyces cerevisiae: Isolation and regulation of thePRB1 structural gene. Genetics 115:255–263

    Google Scholar 

  • Nunnari J, Fox TD, Walter P (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Genetic application of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245

    Google Scholar 

  • Pfanner N, Craig EA, Meijer M (1994) The protein import machinery of the mitochondrial inner membrane. Trends Biochem Sci 19:368–372

    Google Scholar 

  • Poyton RO, Duhl DMJ, Clarkson GHD (1992) Protein export from the mitochondrial matrix. Trends Cell Biol 2:369–375

    Google Scholar 

  • Pratje E, Michaelis G (1977) Allelism studies of mitochondrial mutants resistant to antimycin A or funiculosin inSaccharomyces cerevisiae. Mol Gen Genet 152:167–174

    Google Scholar 

  • Pratje E, Guiard D (1986) One nuclear gene controls the removal of transient pre-sequences from two yeast proteins: one encoded by the nuclear, the other by the mitochondrial genome. EMBO J 5:1312–1317

    Google Scholar 

  • Pratje E, Mannhaupt G, Michaelis G, Beyreuther K (1983) A nuclear mutation prevents processing of a mitochondrially encoded membrane protein inSaccharomyces cerevisiae. EMBO J 2:1049–1054

    Google Scholar 

  • Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) ASaccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243

    Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Google Scholar 

  • Ryan KR, Jensen RE (1995) Protein translocation across mitochondrial membranes: what a long, strange trip it is. Cell 83:517–519

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schneider A, Behrens M, Scherer P, Pratje E, Michaelis G, Schatz G (1991) Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. EMBO J 10:247–254

    Google Scholar 

  • Schwartz E, Neupert W (1994) Mitochondrial protein import: mechanisms, components, and energetics. Biochim Biophys Acta 1187:270–274

    Google Scholar 

  • Taylor JW, Ott J, Eckstein F (1985) The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res 13:8764–8785

    Google Scholar 

  • Van Dijl JM, de Jong A, Vehmaanperä J, Venema G, Bron S (1992) Signal peptidase I ofBacillus subtilis: patterns of conserved amino acids in prokaryotic and cukaryotic type I signal peptidases. EMBO J 11:2819–2828

    Google Scholar 

  • Verner K (1993) Co-translational protein import into mitochondria: an alternative view. Trends Biochem Sci 18:366–371

    Google Scholar 

  • Watanabe Y, Yamamoto M (1994)S. pombe mei2 + encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78:487–498

    Google Scholar 

  • Yaffe MP, Schatz G (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci USA 81:4819–4823

    Google Scholar 

  • Zaret KS, Sherman F (1982) DNA sequences required for efficient transcription termination in yeast. Cell 28:563–573

    Google Scholar 

  • Ziaja K, Michaelis G, Lisowsky T (1993) Nuclear control of the messenger RNA expression for mitochondrial ATPase subunit 9 in a new yeast mutant. J Mol Biol 229:909–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esser, K., Pratje, E. & Michaelis, G. SOM 1, a small new gene required for mitochondrial inner membrane peptidase function inSaccharomyces cerevisiae . Molec. Gen. Genet. 252, 437–445 (1996). https://doi.org/10.1007/BF02173009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02173009

Key words

Navigation