Skip to main content
Log in

The synthesis of theStreptomyces reticuli cellulase (Avicelase) is regulated by both activation and repression mechanisms

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

TheStreptomyces reticuli cellulase (Cell, Avicelase) hydrolyzes crystalline cellulose (Avicel) efficiently to cellobiose. The synthesis of the enzyme is induced by Avicel and repressed by glucose. DNA-binding proteins were purified from inducedS. reticuli mycelia by affinity chromatography using the upstream region of thecell gene linked to Sepharose. The enriched protein(s) provoked a gel electrophoresis mobility shift of the upstream region, irrespective of the presence or absence of a 14-bp palindromic sequence, and enhanced the transcription of thecell gene by theS. reticuli RNA polymerase in vitro. The binding site (GTGACTGAGCGCCG) for the protein(s) was located in the vicinity of a DNA bend upstream of the transcriptional start site. Results of physiological studies, deletion and gel-shift analyses lead to the conclusion that a 14-bp palindrome (TGGGAGCGCTCCCA) — situated between the transcriptional start site and the structure gene — is the operator for a repressor protein. The data presented suggest that the two identified cis-acting elements, in cooperation with an activator and a repressor, mediate regulation ofcell transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angell S, Schwarz E, Bibb MJ (1992) The glucose kinase gene ofStreptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6:2833–2844

    PubMed  Google Scholar 

  • Angell S, Lewis CG, Buttner MJ, Bibb MJ (1994) Glucose repression inStreptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 243:135–143

    Google Scholar 

  • Béguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44:219–248

    PubMed  Google Scholar 

  • Blaak H, Schnellmann J, Walter S, Henrissat B, Schrempf H (1993) Characteristics of an exochitinase fromStreptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem 214:659–669

    PubMed  Google Scholar 

  • Bracco L, Kotlarz D, Kolb A, Diekmann S, Buc H (1989) Synthetic curved DNA sequences can act as transcriptional activators inEscherichia coli. EMBO J 8:4289–4296

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  • Burgess RR, Jendrisak JJ (1975) A procedure for the rapid, largescale purification ofEscherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochem 14:4634–4638

    Google Scholar 

  • Busby S, Ebright RH (1994) Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79:743–746

    PubMed  Google Scholar 

  • Buttner MJ, Fearnley IM, Bibb MJ (1987) The agarase gene (dagA) ofStreptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet 209:101–109

    Google Scholar 

  • Coutinho JB, Gilkes NR, Kilburn DG, Warren RAJ, Miller RC (1993) The nature of the cellulose-binding domain affects the activities of a bacterial endoglucanase on different forms of cellulose. FEMS Microbiol Lett 113:211–218

    Google Scholar 

  • Deutscher J, Küster E, Bergstedt U, Charrier V, Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15:1049–1053

    PubMed  Google Scholar 

  • Falconi M, Higgins NP, Spurio R, Pon CL, Gualerzi CO (1993) Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol Microbiol 10:273–282

    PubMed  Google Scholar 

  • Fernández-Abalos JM, Sánchez P, Coll PM, Villanueva JR, Pérez P, Santamaría RI (1992) Cloning and nucleotide sequence ofcelA 1, an endo-β-1,4-glucanase-encoding gene fromStreptomyces halstedii JM8. J Bacteriol 174:6368–6376

    PubMed  Google Scholar 

  • Hindle Z, Smith CP (1994) Substrate induction and catabolite repression of theStreptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12:737–745

    PubMed  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation ofStreptomyces: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  • Ingram C, Westpheling J (1995) The glucose kinase gene ofStreptomyces coelicolor is not required for glucose repression of thechi63 promoter. J Bacteriol 177:3587–3588

    PubMed  Google Scholar 

  • Ingram C, Delic I, Westpheling J (1995)ccrA1: a mutation inStreptomyces coelicolor that affects the control of catabolite repression. J Bacteriol 177:3579–3586

    PubMed  Google Scholar 

  • Jung ED, Lao GF, Irwin D, Barr BK, Benjamin A, Wilson DB (1993) DNA sequences and expression inStreptomyces lividans of an exoglucanase gene and an endoglucanase gene fromThermomonospora fusca. Appl Environ Microbiol 59:3032–3043

    PubMed  Google Scholar 

  • Kessler A, Dittrich W, Betzler M, Schrempf H (1989) Cloning and analysis of a deletable tetracycline-resistance determinant ofStreptomyces lividans 1326. Mol Microbiol 3:1103–1109

    PubMed  Google Scholar 

  • Koo H-S, Wu H-M, Crothers DM (1986) DNA bending at adenine-thymine tracts. Nature 320:501–506

    PubMed  Google Scholar 

  • Kutzner HJ (1981) The family Streptomycetaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel H (eds) The Prokaryotes: a handbook of habitats, isolation and identification of bacteria. Springer-Verlag, Berlin, pp 2028–2090

    Google Scholar 

  • Kwakman JHJM, Postma PW (1994) Glucose kinase has a regulatory role in carbon catabolite repression inStreptomyces coelicolor. J Bacteriol 176:2694–2698

    PubMed  Google Scholar 

  • Lin E, Wilson DB (1987) Regulation of beta-1,4-endoglucanase synthesis inThermomonospora fusca. Appl Environ Microbiol 53:1352–1357

    Google Scholar 

  • Lin E, Wilson DB (1988a) Transcription of thecelE gene inThermomonospora fusca. J Bacteriol 170:3838–3842

    PubMed  Google Scholar 

  • Lin E, Wilson DB (1988b) Identification of acelE-binding protein and its potential role in induction of thecelE gene inThermomonospora fusca. J Bacteriol 170:3843–3846

    PubMed  Google Scholar 

  • Nakai R, Horinouchi S, Beppu T (1988) Cloning and nucleotide sequence of a cellulase gene,casA, from an alkalophilicStreptomyces strain. Gene 65:229–238

    PubMed  Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases fromTrichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710

    PubMed  Google Scholar 

  • Peczynska-Czoch W, Mordarski M (1988) Actinomycete enzymes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, London, pp 219–283

    Google Scholar 

  • Pigac J, Smokvina T, Hranueli D, Alacevic M (1982) Optimal cultural and physiological conditions for handlingStreptomyces rimosus protoplasts. Appl Environ Microbiol 44:1178–1186

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Schlochtermeier A, Niemeyer F, Schrempf H (1992a) Biochemical and electron microscopic studies of theStreptomyces reticuli cellulase (Avicelase) in its mycelium-associated and extracellular forms. Appl Environ Microbiol 58:3240–3248

    Google Scholar 

  • Schlochtermeier A, Walter S, Schröder J, Moormann M, Schrempf H (1992b) The gene encoding the cellulase (Avicelase) Cell fromStreptomyces reticuli and analysis of protein domains. Mol Microbiol 6:3611–3621

    PubMed  Google Scholar 

  • Shpigelman ES, Trifonov EN, Bolshoy A (1993) CURVATURE — software for the analysis of curved DNA. Comp Appl Biosci 9:435–440

    PubMed  Google Scholar 

  • Stangl H, Gruber F, Kubicek CP (1993) Characterization of theTrichoderma reesei chb2 promoter. Curr Genet 23:115–122

    PubMed  Google Scholar 

  • Théberge M, Lacaze P, Shareck F, Morosoli R, Kluepfel D (1992) Purification and characterization of an endoglucanase fromStreptomyces lividans 66 and DNA sequence of the gene. Appl Environ Microbiol 58:815–820

    PubMed  Google Scholar 

  • Tomme P, van Tilbeurgh H, Petterson G, van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system ofTrichoderma reesei QM9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170:575–581

    PubMed  Google Scholar 

  • Ueki N, Kinashi H, Mizuno T (1991) Primary characterization of curved DNA segments cloned fromStreptomyces DNA with extremely high G/C-contents. Agric Biol Chem 55:173–180

    PubMed  Google Scholar 

  • Virolle MJ, Bibb MJ (1988) Cloning, characterization and regulation of an alpha-amylase gene fromStreptomyces limosus. Mol Microbiol 2:197–208

    PubMed  Google Scholar 

  • Vujaklija D, Horinouchi S, Beppu T (1993) Detection of an A-factor-responsive protein that binds to the upstream activation sequence ofstrR, a regulatory gene for streptomycin biosynthesis inStreptomyces griseus. J Bacteriol 175:2652–2661

    PubMed  Google Scholar 

  • Wachinger G, Bronnenmeier K, Staudenbauer WL, Schrempf H (1989) Identification of mycelium-associated cellulase fromStreptomyces reticuli. Appl Environ Microbiol 55:2653–2657

    Google Scholar 

  • Walter S, Schrempf H (1995) Studies ofStreptomyces reticuli cel-1 (cellulase) gene expression inStreptomyces strains,Escherichia coli, andBacillus subtilis. Appl Environ Microbiol 61:487–494

    PubMed  Google Scholar 

  • Walter S, Schrempf H (1996) Physiological studies of the Avicelase synthesis inStreptomyces reticuli, Appl. Environ Microbiol 62:1065–1069

    Google Scholar 

  • Wang W, Reid SJ, Thomson JA (1993) Transcriptional regulation of an endoglucanase and a cellodextrinase gene inRuminococcus flavefaciens FD-1. J Gen Microbiol 139:1219–1226

    PubMed  Google Scholar 

  • Wittmann S, Shareck F, Kluepfel D, Morosoli R (1994) Purification and characterization of the CelB endoglucanase fromStreptomyces lividans 66 and DNA sequence of the encoding gene. Appl Environ Microbiol 60:1701–1703

    PubMed  Google Scholar 

  • Yagüe E, Wood DA, Thurston CF (1994) Regulation of transcription of thecell gene inAgaricus bisporus. Mol Microbiol 12:41–47

    PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Böhme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, S., Schrempf, H. The synthesis of theStreptomyces reticuli cellulase (Avicelase) is regulated by both activation and repression mechanisms. Molec. Gen. Genet. 251, 186–195 (1996). https://doi.org/10.1007/BF02172917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172917

Key words

Navigation