Molecular and General Genetics MGG

, Volume 251, Issue 2, pp 161–166 | Cite as

An eye imaginal disc-specific transcriptional enhancer in the long terminal repeat of thetom retrotransposon is responsible for eye morphology mutations ofDrosophila ananassae

  • T. Awasaki
  • N. Juni
  • K. M. Yoshida
Original Paper


Optic morphology (Om) mutations ofDrosophila ananassae are semidominant, neomorphic and nonpleiotropic, map to at least 22 loci scattered throughout the genome, and are associated with the insertion of thetom retrotransposon. Molecular and genetic analyses have revealed that eye morphology defects ofOm mutants are caused by the ectopic or excessive expression ofOm genes in the eye imaginal discs of third instar larvae. It is therefore assumed that thetom element carries tissue-specific gene regulatory sequences which enhance expression of theOm genes. In the present study, we examined whether or not the long terminal repeats (LTR) of thetom element contain such an eye imaginal disc-specific enhancer, usingD. melanogaster transformants containing alacZ gene ligated to thetom LTR. Analyses oflacZ gene expression in the eye imaginal discs of third instar larvae of 18 independently established transformant lines showed that thetom LTR was capable of enhancinglacZ expression in all the transformant lines, but the degree of enhancement varied between lines. In addition, the effect of thetom LTRlacZ gene evidently changed when thetom LTR construct was relocated to different chromosomal positions. On the basis of these findings, it is hypothesized that ectopic and excessive expression of theOm genes in the eye imaginal discs is induced by an eye imaginal disc-specific enhancer present in thetom LTR, the effect of which may be subject to chromosomal position effects.

Key words

Drosophila ananassae Om mutations tom element Retrotransposon Eye morphogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkhipova IR, Ilyin YV (1992) Control of transcription ofDrosophila retrotransposons. Bioessays 14:161–168PubMedGoogle Scholar
  2. Awasaki T, Juni N, Hamabata T, Yoshida K, Matsuda M, Tobari YN, Hori SH (1994) Retrotransposon-induced ectopic expression ofcut causes theOm(IA) mutant inDrosophila ananassae. Genetics 137:165–174PubMedGoogle Scholar
  3. Beato M (1989) Gene regulation by steroid hormones. Cell 56:335–344PubMedGoogle Scholar
  4. Campuzano S, Balcells L, Villares R, Carramolino L, Garcia-Alonso L, Modolell J (1986) Excess functionHairy-wing mutations caused bygypsy andcopia insertions within structural genes of theachaete-scute locus of Drosophila. Cell 44:303–312PubMedGoogle Scholar
  5. Corces VG, Geyer PK (1991) Interactions of retrotransposons with the host genome: the case of thegypsy element ofDrosophila. Trends Genet 7:86–90PubMedGoogle Scholar
  6. Dickson B, Hafen E (1993) Genetic dissection of eye development inDrosophila. In: Bate M, Martinez-Arias A (eds) The development ofDrosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1327–1362Google Scholar
  7. Finnegan DJ, Fawcett DH (1986) Transposable elements inDrosophila melanogaster. In: Maclean N (ed) Oxford surveys on eukaryotic genes, vol 13. Oxford University Press, Oxford, pp 1–62Google Scholar
  8. Geyer PK, Corces VG (1992) DNA position-specific repression of transcription by aDrosophila zinc finger protein. Genes Dev 6:1865–1873PubMedGoogle Scholar
  9. Green MM (1988) Mobile DNA elements and spontaneous gene mutation. In: Lambert ME, McDonald JF, Weinstein IB (eds) Eukaryotic transposable elements as mutagenic agents. Banbury Reports, vol 30. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 41–50Google Scholar
  10. Hinton CW (1984) Morphogenetically specific mutability inDrosophila ananassae. Genetics 106:631–653Google Scholar
  11. Hinton CW (1988) Formal relations betweenOm mutants and their suppressors inDrosophila ananassae. Genetics 120:1035–1042PubMedGoogle Scholar
  12. Hiromi Y, Gehring WJ (1987) Regulation and function of the Drosophila segmentation genefushi tarazu. Cell 50:963–974PubMedGoogle Scholar
  13. Hoover KK, Chien AJ, Corces VG (1993) Effects of transposable elements on the expression of theforked gene ofDrosophila melanogaster. Genetics 135:507–526PubMedGoogle Scholar
  14. Huang M, Lee JW, Peterson DO (1993) Functional redundancy of octamer elements in the mouse mammary tumor virus promoter. Nucleic Acids Res 21:5235–5241PubMedGoogle Scholar
  15. Jack J, Dorsett D, DeLlotto Y, Liu S (1991) Expression of thecut locus in theDrosophila wing margin is required for cell type specification and is regulated by a distant enhancer. Development 113:735–747PubMedGoogle Scholar
  16. Karess RE, Rubin GM (1984) Analysis of P transposable element functions inDrosophila. Cell 38:135–146PubMedGoogle Scholar
  17. Kramer H, Zipursky L (1992) Whole mount in situ hybridization to imaginal discs using digoxigenin-labelled DNA probes. Drosophila Inf Serv 71:147Google Scholar
  18. Matsubayashi H, Matsuda M, Tomimura Y, Shibata M, Tobari YN (1992) Cytological mapping ofOm mutants ofDrosophila ananassae. Jpn J Genet 67:259–264PubMedGoogle Scholar
  19. Mount SM, Green MM, Rubin GM (1988) Partial revertants of the transposable element-associated suppressible allelewhite-apricot inDrosophila melanogaster. Genetics 118:221–234PubMedGoogle Scholar
  20. Mozer BA, Benzer S (1994) Ingrowth by photoreceptor axons induces transcription of a retrotransposon in the developingDrosophila brain. Development 120:1049–1058PubMedGoogle Scholar
  21. Nusse R (1986) The activation of cellular oncogenes by retroviral insertion. Trends Genet 2:244–247Google Scholar
  22. Nusse R (1988) Theint genes in mammary tumorigenesis and in normal development. Trends Genet 4:291–295PubMedGoogle Scholar
  23. Pirrotta V, Steller H, Bozzetti MP (1985) Multiple upstream regulatory elements control the expression of theDrosophila white gene. EMBO J 4:3501–3508PubMedGoogle Scholar
  24. Robertson HM, Preston CR, Phillis RW, Johmson-Schlitz DM, Benz WK, Engels WR (1988) A stable source of P element transposase inDrosophila melanogaster. Genetics 118:461–470PubMedGoogle Scholar
  25. Rubin GM (1983) Dispersed repetitive DNAs inDrosophila. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, New York, pp 329–361Google Scholar
  26. Rubin GM, Spradling AC (1982) Genetic transformation ofDrosophila with transposable element vectors. Science 218:348–353PubMedGoogle Scholar
  27. Schiff R, Itin A, Keshet E (1991) Transcription activation of mouse retrotransposons in vivo: specific expression in steroidogenic cells in response to trophic hormoes. Genes Dev 5:521–532PubMedGoogle Scholar
  28. Shrimpton AE, Montgomery EA, Langley CH (1986)Om mutations inDrosophila ananassae are linked to insertions of a transposable element. Genetics 114:125–135Google Scholar
  29. Smith PA, Corces VG (1991)Drosophila transposable elements: mechanisms of mutagenesis and interactions with the host genome. Adv Genet 29:229–300PubMedGoogle Scholar
  30. Tanda S, Corces VG (1991) Retrotransposon-induced overexpression of a homeobox gene causes defects in eye morphogenesis inDrosophila. EMBO J 10:407–417PubMedGoogle Scholar
  31. Tanda S, Shrimpton AE, Ling-Ling C, Itayama H, Matsubayashi H, Saigo K, Tobari YN, Langley CH (1988) Retrovirus-like features and site-specific insertions of a transposable element,tom, inDrosophila ananassae. Mol Gen Genet 214:405–411PubMedGoogle Scholar
  32. Tanda S, Shrimpton AE, Hinton CW, Langley CH (1989) Analysis of theOm(1D) locus inDrosophila ananassae. Genetics 123:495–502PubMedGoogle Scholar
  33. Tanda S, Leshko LA, Corces VG, Hori SH (1993) Optic morphology (Om) mutations. In: Tobari YN (ed)Drosophila ananassae; genetical and biological aspects. Japan Scientific Societies Press, Tokyo and Karger, Basel, pp 89–138Google Scholar
  34. Tanda S, Mullor JL, Corces VG (1994) TheDrosophila tom retrotransposon encodes an envelope protein. Mol Cell Biol 14:5392–5401PubMedGoogle Scholar
  35. Yoshida K, Juni N, Awasaki T, Tsuriya Y, Shaya N, Hori SH (1994) Retrotransposon-induced ectopic expression of theOm(2D) gene causes the eye-specificOm(2D) phenotype inDrosophila ananassae. Mol Gen Genet 245:577–587PubMedGoogle Scholar
  36. Zachar Z, Davison D, Garza D, Bingham PM (1985) A detailed developmental and structural study of the transcriptional effects of insertion of thecopia transposon into thewhite locus ofDrosophila melanogaster. Genetics 111:495–515PubMedGoogle Scholar
  37. Ziarczyk P, Best-Belpomme M (1991) A short 5′ region of the long terminal repeat is required for regulation by hormone and heat shock ofDrosophila retrotransposon 1731. Nucleic Acids Res 19:5689–5693PubMedGoogle Scholar
  38. Ziarczyk P, Fourcade-Peronnet F, Simonart S, Maisonhaute C, Best-Belpomme M (1989) Functional analysis ofDrosophila 1731 retrotransposon: promoter function and steroid regulation. Nucleic Acids Res 17:8631–8644PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • T. Awasaki
    • 1
  • N. Juni
    • 1
  • K. M. Yoshida
    • 2
  1. 1.Department of Zoology, Faculty of ScienceHokkaido UniversitySapporoJapan
  2. 2.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations