Heat and Mass Transfer

, Volume 31, Issue 6, pp 419–426 | Cite as

Free convection heat transfer around a horizontal ice cylinder formed through melting within an immiscible liquid

  • M. Yamada
  • S. Fukusako
  • M. Eman-Bellah Sayed
Originals

Abstract

An experimental study has been performed to determine the melting heat transfer characteristics of a horizontal ice cylinder immersed in an immiscible liquid. Vegetable oil, which was contained within a horizontal heated copper tube, was adopted as a testing liquid. A bubble-free ice cylinder was situated at the center of the tube. The experiments were carried out for the heated tube temperatures ranging from 8.0 to 30.0 °C, while for the cooled tube temperatures from −5.0 to −13.0 °C. The flow pattern of the liquid and the ice-liquid interface shape of the ice cylinder being formed through melting were extensively observed and recorded photographically. The local/average heat transfer coefficient along the ice cylinder at steady state was determined as a function of the heated tube temperature as well as the cooled tube temperature. The measurements show that the ice layer profiles at steady state are quite similar irrespective of the thermal conditions.

Keywords

Heat Transfer Heat Transfer Coefficient Convection Heat Transfer Free Convection Heat Transfer Characteristic 

Nomenclature

a

thermal diffusivity, m2/s

Dc

diameter of cooled tube, m

Dh

diameter of heated tube

Di

equivalent diameter of ice cylinder at steady state, m

g

gravitational acceleration, m2/s

Gr

Grashof number defined in Eq. (5)

hφ

local heat transfer coefficient defined in Eq. (1), W/(m2K)

hm

average heat transfer coefficient defined in Eq. (2), W/(m2K)

L⋆

dimensionless annular width defined in Eq. (7)

n

normal direction to ice surface

Nu

average Nusselt number defined in Eq. (4)

Pr

Prandtl number defined in Eq. (6)

r

dimensionless radial coordinate (=R/R1)

R

radial coordinate, m

Ra

Rayleigh number (=Gr Pr)

R1

inner radius of ice cylinder defined in Fig. 3

R2

outer radius of ice cylinder defined in Fig. 3

T

temperature, °C

Tc

cooled tube temperature, °C

Ff

fusion temperature, °C

Th

heated tube temperature, °C

Ts

surface temperature of ice cylinder, °C

ΔT

temperature difference (=T h T c ), °C

Greek symbols

β

coefficient of volumetric thermal expansion, 1/K

θ

dimensionless temperature (=(TT c )/(T s >−T c ))

θc

cooling temperature ratio (=(T s T c )/(T h T s ))

λi

thermal conductivity of ice, W/(m K)

λl

thermal conductivity of liquid, W/(m K)

v

kinematic viscosity, m2/s

φ

angular position measured from top of ice cylinder, deg

ψ

angle defined in Fig. 3

Wärmeübergang infolge freier Konvektion um einen horizontalen Eiszylinder, dessen Form sich durch Abschmelzen in einer nichtmischbaren Flüssigkeit bildet

Zusammenfassung

Die Experimentelle Untersuchung hatte zum Ziel, den Wärmeübergangsmechanismus beim Schmelzen eines horizontalen, in eine nichtmischbare Flüssigkeit eingetauchten Eiszylinders aufzuklären. In einem horizontalen, beheizten Kupferrohr befindliches Pflanzenöl diente als Versuchsflüssigkeit. Ein blasenfreier Eiszylinder befand sich in der Mitte des Rohres. Bei den Experimenten variierten die Temperaturen des Heizrohres zwischen 8.0 und 30.0 °C, die des gekühlten Innenrohres zwischen −5.0 und −13.0 °C. Das Strömungsmuster der Flüssigkeit und die sich während des Schmelzvorganges ausbildende Form der Eis-Flüssigkeitsgrenze am Eiszylinder wurden genauestens beobachtet und photographisch festgehalten. Der Lokale, den Eiszylinder entlang gemittelte Wärmeübergangskoeffizient wurde für den Stationärfall als Funktion der Heiz- und Kühlrohrtemperaturen bestimmt. Die Messungen zeigen, daß die Eisschichtprofile im Stationärfall — unabhängig von den thermischen Bedingungen — weitgehend ähnlich sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Viskanta, R.: Heat transfer during melting and solidification of metals. Trans. ASME J. Heat Transfer 110 (1988) 1205–1219Google Scholar
  2. 2.
    Yo, L.S.;Prusa, J.: Melting and freezing. Adv. Heat Transfer 19 (1990) 1–95Google Scholar
  3. 3.
    Fukusako, S.; Yamada, M.: Some topics on melting heat transfer problems. Proc. 4th Int. Symp. Them. Engng. Sci. Cold Regions (1993) 3–16Google Scholar
  4. 4.
    Fukusako, S.;Yamada, M.: Recent advances in research on water-freezing and ice-melting problems. Exp. Thermal Fluid Sci. 6 (1994) 90–105Google Scholar
  5. 5.
    Fukusako, S.;Yamada, M.: Recent advances on research on melting heat transfer problems. Proc. 10th Int. Heat Transf. Conf. 1 (1994) 313–331Google Scholar
  6. 6.
    Saitoh, T.: Natural convection heat transfer from a horizontal ice cylinder. Appl. Sci. Res. 19 (1976) 425–451Google Scholar
  7. 7.
    Fukusako, S.; Tago, M.; Yamada, M.; Kitayama, K.: Free convection heat transfer around a horizontal ice cylinder formed through melting in saline water. ASME paper HTD-139 (1990) 35–41Google Scholar
  8. 8.
    Fukusao, S.;Tago, M.;Yamada, M.;Kitayama, K.;Watanabe, C.: Melting heat transfer from a horizontal ice cylinder immersed in quiescent saline water. Trans. ASME. J. Heat Transfer 114 (1992) 34–40Google Scholar
  9. 9.
    Fukusako, S.;Yamada, M.;Watanabe, C.: Melting heat transfer from a horizontal ice cylinder immersed in saline water: effect of liquid depth to saline water surface. Trans. JSME 59B (1993) 2509–2515Google Scholar
  10. 10.
    Fukusako, S.;Yamada, M.;Watanabe, C.: Melting characteristics of a horizontal cylinder immersed in saline water: effect of salinity level. Trans. JSME 60B (1994) 276–283Google Scholar
  11. 11.
    Endo, M.;Hoshino, M.: Crystallized liquid ice thermal storage system. Refrigeration 62 (1987) 481–487Google Scholar
  12. 12.
    Yamada, M.;Fukusako, S.;Morizane, H.;Kim, M.H.: Melting heat transfer along a horizontal heated tube immersed in liquid ice. Trans. JSME 57B (1991) 3804–3920Google Scholar
  13. 13.
    Fukusako, S.;Yamada, M.;Morizane, H.;Kim, M.H.: Melting heat transfer along a horizontal heated tube immersed in fluidized liquid-ice bed. Trans. JSME 57B (1991) 3293–3299Google Scholar
  14. 14.
    Fukusako, S.;Yamada, M.;Kim, M.H.: Melting heat transfer of liquid ice in a rectangular cavity with heated vertical wall. Trans. JSME 58B (1992) 2538–2542Google Scholar
  15. 15.
    Kim, M.H.;Fukusako, S.;Yamada, M.: Melting characterisrtics of liquid ice in a rectangular vessel heated from above. Proc. 4th ASME/JMSE. Therm. Eng. Joint Conf. 4 (1995) 491–498Google Scholar
  16. 16.
    Yamada, M.; Fukusako, S.; Kim, M.H.: Melting heat transfer characteristics of liquid ice in a rectangular enclosure. IMechE Conf. Trans. Heat Transfer (1995) 537–541Google Scholar
  17. 17.
    Cheng, K.C.;Inaba, H.;Gilpin, R.R.: An experimental investigation of ice formation around isothermally cooled cylinder in cross flow. Trans. ASME J. Heat Transfer 103 (1981) 733–738Google Scholar
  18. 18.
    Cheng, K.C.;Inaba, H.;Gilpn, R.R.: Effects of natural convection on ice formation around an isothermally cooled horizontal cylinder. Trans. ASME J. Heat Transfer 110 (1988) 931–937Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Yamada
    • 1
  • S. Fukusako
    • 1
  • M. Eman-Bellah Sayed
    • 1
  1. 1.Department of Mechanical EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations