Journal of Mathematical Sciences

, Volume 95, Issue 3, pp 2202–2208 | Cite as

The region of values of f(z0) in a class of typically real functions

  • E. G. Goluzina
Article
  • 30 Downloads

Abstract

Let TR be the class of functions f(z) with f(0)=0 and f′(0)=1 that are regular and typically real in the disk ¦z¦< 1. The region of values of the system ª(z0),f(r),f″(0)/2} (for fixed z0 and r, 0<r<1, on the class Tr is determined. The region of values of f(z0) on the class of functions from Tr with fixed f(r) and f″(0) is found. Bibliography:

Keywords

Real Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Goluzina, “On regions of values of some systems of functionals in the class of typically real functions,”Vestn. Leningrad. Gos. Univ., Ser. Mat., Mekh., Astron.,2, No. 7, 45–62 (1965).Google Scholar
  2. 2.
    E. G. Goluzina, “On the region of values of a system of functionals in the class of typically real functions,”Zap. Nauchn. Semin. POMI,226, 69–79 (1996).Google Scholar
  3. 3.
    M. S. Robertson, “On the coefficients of typically real functions,”Bull. Am. Math. Soc.,41, 565–572 (1935).Google Scholar
  4. 4.
    G. M. Goluzin, “On typically real functions,”Mat. sb.,27 (69), No. 2, 201–218 (1950).Google Scholar
  5. 5.
    G. M. Goluzin, “On a variational method in the theory of analytical functions,”Uchen. Zap. Leningrad. Gos. Univ.,144, 85–101 (1952).Google Scholar
  6. 6.
    W. Rogosinski, “über positive harmonische Entwicklungen und typisch-reelle Potenzreihen,”Math. Z.,35, 93–121 (1932).Google Scholar
  7. 7.
    S. A. Gel'fer, “On typically real functions of orderp,”Mat. Sb.,35, No. 2, 193–214 (1954).Google Scholar
  8. 8.
    J. A. Jenkins, “Some problems for typically real functions,”Can. J. Math.,13 (1961).Google Scholar
  9. 9.
    Yu. E. Alenitsyn, “On regions of change of systems of coefficients of functions representable by a sum of Stieltjes integrals,”Vestn. Leningrad. Gos. Univ., Ser. Mat., Mekh., Astron.,2, No. 7, 25–41 (1962).Google Scholar
  10. 10.
    N. Akhiezer and M. Krein,On Some Questions of Moment Theory [in Russian], Khar'kov (1938).Google Scholar
  11. 11.
    M. G. Krein and A. A. Nudel'man,Markov's Moment Problem and Extremal Problems [in Russian], Moscow (1973).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • E. G. Goluzina

There are no affiliations available

Personalised recommendations