Skip to main content
Log in

The glucose repressor genecre1 ofTrichoderma: Isolation and expression of a full-length and a truncated mutant form

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Thecre1 genes of the filamentous fungiTrichoderma reesei andT. harzianum were isolated and characterized. The deduced CREI proteins are 46% identical to the product of the glucose repressor genecreA ofAspergillus nidulans, encoding a DNA-binding protein with zinc fingers of the C2H2 type. Thecre1 promoters contain several sequence elements that are identical to the previously identified binding sites forA. nidulans CREA. Steady-state mRNA levels forcre1 of theT. reesei strain QM9414 varied depending on the carbon source, being low on glucose-containing media. These observations suggest thatcre1 expression may be autoregulated. TheT. reesei strain Rut-C30, a hyperproducer of cellulolytic enzymes, was found to express a truncated form of thecre1 gene (cre1-1) with an ORF corresponding to a protein of 95 amino acids with only one zinc finger. Unlike QM9414 the strain Rut-C30 produced cellulase mRNAs on glucose-containing medium and transformation of the full-lengthcre1 gene into this strain caused glucose repression ofcbh1 expression, demonstrating thatcre1 regulates cellulase expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arst HN, Bailey CR (1977) The regulation of carbon metabolism inAspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology ofAspergillus nidulans. Academic Press, London, pp 131–146

    Google Scholar 

  • Arst HN Jr, Tollervey D, Dowzer CEA, Kelly JM (1990) An inversion truncating thecreA gene ofAspergillus nidulans results in carbon catabolite derepression. Mol Microbiol 4:851–854

    Google Scholar 

  • Bailey CR, Arst HN (1975) Carbon catabolite repression inAspergillus nidulans: Eur J Biochem 51:573–577

    Google Scholar 

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stableTrichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol 3:153–157

    Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources rich in ribonuclease. Biochemistry 18:5294–5299

    Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster ofAspergillus nidulans. EMBO J 13:407–415

    Google Scholar 

  • Dowzer CEA, Kelly JM (1989) Cloning of thecreA gene fromAspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459

    Google Scholar 

  • Dowzer CEA, Kelly JM (1991) Analysis of thecreA gene, a regulator of carbon catabolite repression inAspergillus nidulans. Mol Cell Biol 9:5701–5709

    Google Scholar 

  • Drysdale MR, Kolze SE, Kelly JM (1993) TheAspergillus niger carbon catabolite repressor encoding gene,creA. Gene 130:241–245

    Google Scholar 

  • Estruch F (1991) The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein. Nucleic Acids Res 19:4873–4877

    Google Scholar 

  • Estruch F, Carlson M (1993) Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant ofSaccharomyces cerevisiae. Mol Cell Biol 13:3872–3881

    Google Scholar 

  • Hynes MJ, Corrick CM, King JA (1983) Isolation of genomic clones containing theamdS gene ofAspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol Cell Biol 3:1430–1439

    Google Scholar 

  • Kubicek CP (1993) From cellulose to cellulase inducers: facts and fiction. In: Suominen P, Reinikainen T (eds) Proceedings of the Second TRICEL Symposium onTrichoderma reesei cellulases and other hydrolases, Espoo, Finland. Foundation for Biotechnical and Industrial Fermentation Research 8:181–188

    Google Scholar 

  • Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) Specific binding sites in the ethanol regulon for the CREA repressor mediating carbon catabolite repression inAspergillus nidulans. Mol Microbiol 7:847–857

    Google Scholar 

  • Mach RL, Schindler M, Strauss J, Kubicek CP (1994) Cre1-mediated glucose repression ofxyn1 (xylanase I-encoding) gene expression inTrichoderma reesei. Abstract A2, 2nd European Conference on Fungal Genetics, Lunteren, The Netherlands April 28–May 1, 1994

  • Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant ofTrichoderma viride. Appl Microbiol 21:152–154

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mäntylä AL, Rossi KH, Vanhanen SA, Penttilä ME, Suominen PL, Nevalainen KMH (1992) Electrophoretic karyotyping of wild-type and mutantTrichoderma longibrachiatum (reesei) strains. Curr Genet 21:471–477

    Google Scholar 

  • Matheucci E Jr, Henrique-Silva S, El-Gogary S, Rossini CHB, Leite A, Escobar Vera J, Carle Urioste JC, Crivellaro O, El-Dorry H. Structure, organization and promoter expression of the actin-encoding gene inTrichoderma reesei. Gene 161:103–106

  • Mathieu M, Felenbok B (1994) TheAspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J 13:4022–4027

    Google Scholar 

  • Montenecourt BS, Eveleigh DE (1977) Preparation of mutants ofTrichoderma reesei with enhanced cellulase production. Appl Environ Microbiol 34:777–782

    Google Scholar 

  • Montenecourt BS, Eveleigh DE (1979) Selective screening methods for the isolation of high yielding cellulase mutants ofTrichoderma reesei. In: Brown RD Jr, Jurasec L (eds) Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis. Advances in Chemistry, vol 181, Academic Press, San Diego, pp 289–301

    Google Scholar 

  • Nakari T, Alatalo E, Penttilä M (1993) Isolation ofTrichoderma reesei genes highly expressed on glucose-containing media: characterization of thetef1 gene encoding translation elongation factor 1α. Gene 136:313–318

    Google Scholar 

  • Nardelli J, Gibson T, Charnay P (1992) Zinc finger-DNA recognition: analysis of base specificity by site-directed mutagenesis. Nucleic Acids Res 20:4137–4144

    Google Scholar 

  • Nehlin JO, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J 9:2891–2898

    Google Scholar 

  • Nevalainen H, Penttilä M (1995) Molecular biology of cellulolytic fungi. A review. In: Kück U (ed) The Mycota, vol II (Genetics biotechnology). Springer-Verlag, Berlin, pp 303–319

    Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles JKC (1987) A versatile transformation system for the cellulolytic filamentous fungusTrichoderma reesei. Gene 61:155–164

    Google Scholar 

  • Penttilä ME, André L, Lehtovaara P, Knowles JKC (1988) Efficient secretion of two fungal cellobiohydrolases bySaccharomyces cerevisiae. Gene 63:103–112

    Google Scholar 

  • Penttilä M, Saloheimo A, Ilmén M, Onnela M-L (1993) Regulation of the expression ofTrichoderma cellulases at mRNA and promoter level. In: Suominen P, Reinikainen T (eds) Proceedings of the Second TRICEL Symposium onTrichoderma reesei cellulases and other hydrolases, Espoo, Finland. Foundation for Biotechnical and Industrial Fermentation Research 8:189–197

    Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Google Scholar 

  • Sakai A, Shimizu Y, Hishinuma F (1988) Isolation and characterization of mutants which show an oversecretion phenotype inSaccharomyces cerevisiae. Genetics 119:499–506

    Google Scholar 

  • Sakai A, Shimizu Y, Kondou S, Chibazakura T, Hishinuma F (1990) Structure and molecular analysis ofRGR1, a gene required for glucose repression ofSaccharomyces cerevisiae. Mol Cell Biol 10:4130–4138

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Stålbrand H, Saloheimo A, Vehmaanperä J, Henrissat B, Penttilä M (1995) Cloning and expression in yeast ofTrichoderma reesei β-mannanase containing a cellulose binding domain. Appl Env Microbiol 61:1090–1097

    Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92:3132–3136

    Google Scholar 

  • Trumbly RJ (1992) Glucose repression in the yeastSaccharomyces cerevisiae. Mol Microbiol 6:15–21

    Google Scholar 

  • Wolffhechel H (1989) Fungal antagonists ofPythium ultimum isolated from a disease suppressiveSphagnum peat. Växtskyddsnotiser 53:7–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. A. M. J. J. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilmén, M., Thrane, C. & Penttilä, M. The glucose repressor genecre1 ofTrichoderma: Isolation and expression of a full-length and a truncated mutant form. Molec. Gen. Genet. 251, 451–460 (1996). https://doi.org/10.1007/BF02172374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172374

Key words

Navigation