Skip to main content
Log in

Interleukin-1, stromal cells, granulopoiesis, and the inflammatory response

  • Published:
Biotherapy

Abstract

A number ofin vitro studies carried out in our laboratory over the past ten years have led to some clarification of the role of mononuclear phagocytes in hematopoietic regulation. The results of these studies have demonstrated that mononuclear phagocytes produce proteins, notably interleukin-1 (IL-1), that induce the expression of multilineage hematopoietic growth factors by human vascular endothelial cells, fibroblasts, T-lymphocytes, and thymic epithelial cells. More recently we and others have identified these induced factors as G-CSF, GM-CSF, IL-6, and IL-1. Although IL-1 seems to stimulate expression of these genes by inducing the accumulation of gene transcripts, interestingly the accumulation results from prolongation of mRNA half-life. We propose that the inductive capacity of IL-1 results from its activation of ribonuclease inhibitory activity in the cytoplasm of IL-1 induced cells and hypothesize that this may be a general mechanism by which IL-1 induces gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trinchieri G, Murphy M, Perussia B. Regulation of hematopoiesis by T lymphocytes and natural killer cells. CRC Crit Rev Oncol Hematol 1987; 7: 219–65.

    Google Scholar 

  2. Segal GM, Bagby GC. Vascular endothelial cells and hematopoietic regulation. Int J Cell Cloning 1988; 6: 306–12.

    PubMed  Google Scholar 

  3. Bagby GC. Interleukin 1 and hematopoiesis. Blood Rev 1989; 3: 152–61.

    PubMed  Google Scholar 

  4. Eaves AC, Eaves CJ. Maintenance and proliferation control of primitive hemopoietic progenitors in long-term cultures of human marrow cells. Blood Cells 1988; 14: 355–68.

    PubMed  Google Scholar 

  5. Sieff CA, Niemeyer CM, Mentzer SJ, Faller DV. Interleukin-1, tumor necrosis factor, and the production of colony-stimulating factors by cultured mesenchymal cells. Blood 1988; 72: 1316–23.

    PubMed  Google Scholar 

  6. Herrmann F, Oster W, Neuer SC, Lindemann A, Mertelsmann RH. Interleukin 1 stimulates T lymphocytes to produce granulocyte-monocyte colony-stimulating factor. J Clin Invest 1988; 81: 1415–8.

    PubMed  Google Scholar 

  7. Bagby GC. Production of multilineage growth factors by hematopoietic stromal cells: an intercellular regulatory network involving mononuclear phagocytes and interleukin-1. Blood Cells 1987; 13: 147–159.

    PubMed  Google Scholar 

  8. Bagby GC, Rigas VD, Bennett RM, Vandenbark AA, Garewal HS. Interaction of lactoferrin, monocytes, and T-lymphocyte subsets in the regulation of a steady-state granulopoiesis in vitro. J Clin Invest 1981; 68: 56–63.

    PubMed  Google Scholar 

  9. Zsebo KM, Yuschenkoff V, Schuller S, et al. Vascular endothelial cells and granulopoiesis: Interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 1988; 71: 99–103.

    PubMed  Google Scholar 

  10. Segal GM, McCall E, Bagby GC. The erythroid burst promoting activity produced by interleukin-1 stimulated endothelial cells is granulocyte macrophage colony stimulating factor. Blood 1988; 72: 1364–7.

    PubMed  Google Scholar 

  11. Ridgway D, Borzy MS, Bagby GC. Granulocyte macrophage colony stimulating activity production by cultured human thymic non-lymphoid cells is regulated by endogenous interleukin-1 Blood 1988; 72: 1230–6.

    PubMed  Google Scholar 

  12. Lee M. Segal GM, Bagby GC. Interleukin-1 induces human bone marrow-derived fibroblasts to produce multilineage hematopoietic growth factors. Exp Hematol 1987; 15: 983–8.

    PubMed  Google Scholar 

  13. Kaushansky K, Lin N, Adamson JW. Interleukin 1 stimulates fibroblasts to synthesize granulocyte-macrophage and granulocyte colony-stimulating factors. J Clin Invest 1988; 81: 92–7.

    PubMed  Google Scholar 

  14. Dalton BJ, Connor JR, Johnson WJ. Interleukin-1 induces interleukin-lα and interleukin-1β gene expression in synovial fibroblasts and peripheral blood monocytes. Arthritis Rheum 1989; 32: 279–87.

    PubMed  Google Scholar 

  15. Golde DW, Cline MJ. Identification of colony-stimulating cells in human peripheral blood. J Clin Invest 1972; 51: 2981–3.

    PubMed  Google Scholar 

  16. Chervenick PA, LoBuglio AF. Human blood monocytes, stimulators of granulocyte and mononuclear colony formation in vitro. Science 1972; 178: 164–6.

    PubMed  Google Scholar 

  17. Zucali JR, Broxmeyer HE, Ulatowski JA. Specificity of lactoferrin as an inhibitor of granulocyte-macrophage colony-stimulating activity production from fetal mouse liver cells. Blood 1979; 54: 951–4.

    PubMed  Google Scholar 

  18. Broxmeyer HE, Smithyman A, Eger RR, Meyers PA, de Sousa M. Identification of lactoferrin as the granulocyte derived inhibitor of colony-stimulating activity production. J Exp Med 1978; 148: 1052–67.

    PubMed  Google Scholar 

  19. Broxmeyer HE. Inhibition in vivo of mouse granulopoiesis by cell-free activity derived from human polymorphonuclear neutrophils. Blood 1978; 51: 889–901.

    PubMed  Google Scholar 

  20. McCall E, Bagby GC. Monocyte-derived recruiting activity. Kinetics of production and effects of endotoxin. Blood 1985; 65: 689–95.

    PubMed  Google Scholar 

  21. Bagby GC, McCall E, Layman DL. Regulation of colony stimulating activity production. Interactions of fibroblasts, mononuclear phagocytes and lactoferrin. J Clin Invest 1983; 71: 340–4.

    PubMed  Google Scholar 

  22. Bagby GC, McCall E, Bergstrom KA, Burger DA. A monokine regulates colony-stimulating activity production by vascular endothelial cells. Blood 1983; 62: 663–8.

    PubMed  Google Scholar 

  23. Bagby GC, Dinarello CA, Wallace P, Wagner C, Hefeneider S, McCall E. Interleukin-1 stimulates granulocyte macrophage colony stimulating activity release by vascular endothelial cells. J Clin Invest 1986; 78: 1316–23.

    PubMed  Google Scholar 

  24. Segal GM, McCall E, Stueve T, Bagby GC. Interleukin 1 stimulates endothelial cells to release multilineage human colony-stimulating activity. J Immunol 1987; 138: 1772–8.

    PubMed  Google Scholar 

  25. Sieff CA, Tsai S, Faller DV. Interleukin 1 induces cultured human endothelial cell production of granulocyte-macrophage colony-stimulating factor. J Clin Invest 1987; 79: 48–51.

    PubMed  Google Scholar 

  26. Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS. Interleukin-1 stimulates fibroblasts to produce granulocyte-macrophage colony stimulating activity and prostaglandin E2. J Clin Invest 1986; 77: 1857–63.

    PubMed  Google Scholar 

  27. Broudy VC, Kaushansky K, Segal GM, Harlan JM, Adamson JW. Tumor necrosis factor typeα stimulates human endothelial cells to produce granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 1986; 83: 7467–71.

    PubMed  Google Scholar 

  28. Munker R, Gasson J, Ogawa M, Koeffler HP. Recombinant human TNF induces production of granulocyte macrophage colony-stimulating factor. Nature 1986; 323: 79–82.

    PubMed  Google Scholar 

  29. Tovey MG, Content J, Gresser I, et al. Genes for IFN-β-2(IL-6), tumor necrosis factor, and IL-1 are expressed at high levels in the organs of normal individuals. J Immunol 1988; 141: 3106–10.

    PubMed  Google Scholar 

  30. Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: A common mediator. Annu Rev Biochem 1988; 57: 505–18.

    PubMed  Google Scholar 

  31. Austin-Seymour MM, Hoppe RT, Cox RS, Rosenberg SA, Kaplan HS. Hodgkin's disease in patients over sixty years old. Ann Int Med 1984; 100: 13–8.

    PubMed  Google Scholar 

  32. Aderka D, Holtmann H, Toker L, Hahn T, Wallach D. Tumor necrosis factor induction by Sendai virus. J Immunol 1986; 136: 2938–42.

    PubMed  Google Scholar 

  33. Le J, Henriksen-DeStefano D, Vilcek J. Bacterial lipopolysaccharide-induced interferon-gamma production: roles of interleukin 1 and interleukin 2. J Immunol 1986; 136: 4525–30.

    PubMed  Google Scholar 

  34. Michie HR, Manogue KR, Spriggs DR, et al. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 1988; 318: 1481–6.

    PubMed  Google Scholar 

  35. Molvig J, Baek L, Christensen P, et al. Endotoxin-stimulated human monocyte secretion of interleukin 1, tumour necrosis factor alpha, and prostaglandin E2 shows stable interindividual differences. Scand J Immunol 1988; 27: 705–16.

    PubMed  Google Scholar 

  36. Goldfield AE, Maniatis T. Coordinate viral induction of tumor necrosis factorα and interferonβ in human B cells and monocytes. Proc Natl Acad Sci USA 1989; 86: 1490–494.

    PubMed  Google Scholar 

  37. Knudtzon S, Mortensen BT. Browth stimulation of human bone marrow cells in agar culture by vascular cells. Blood 1975; 46: 937–43.

    PubMed  Google Scholar 

  38. Gordon MY, Kearney L, Hibbin JA. Effects of human marrow stromal cells on proliferation by human granulocytic (GM-CSF), erythroid (BFU-E) and mixed (Mix-CFC) colony-forming cells. Br J Haematol 1983; 53: 317–25.

    PubMed  Google Scholar 

  39. Quesenberry PJ, Gimbrone MA. Vascular endothelium as a regulator of granulopoiesis: production of colony-stimulating activity by cultured human endothelial cells. Blood 1980; 56: 1060–7.

    PubMed  Google Scholar 

  40. Gerson SL, Friedman HM, Clines DB. Viral infection of vascular endothelial cells alters production of colony-stimulating activity. J Clin Invest 1985; 76: 1382–90.

    PubMed  Google Scholar 

  41. Bagby GC, Shaw G, Segal GM. Human vascular endothelial cells, granulopoiesis, and the inflammatory response. J Invest Derm 1989; 93: 48S-52S, 1989.

    PubMed  Google Scholar 

  42. Zuckerman KS, Bagby GC, McCall E, Sparks B, Wells J, Patel V. A monokine stimulates production of human erythroid burst promoting activity by endothelial cells in-vitro. J Clin Invest 1985; 75: 722–5.

    PubMed  Google Scholar 

  43. Broudy VC, Zuckerman KS, Jetmalani S, Fitchen JH, Bagby GC Jr. Monocytes stimulate fibroblastoid bone marrow stromal cells to produce multilineage hematopoietic growth factors. Blood 1986; 68: 530–4.

    PubMed  Google Scholar 

  44. Broudy VC, Kaushansky K, Harlan JM, Adamson JW. Interleukin-1 stimulates human endothelial cells to produce granulocyte macrophage colony-stimulating factor and granulocyte colony-stimulating factor. J Immunol 1987; 139: 464–8.

    PubMed  Google Scholar 

  45. Koeffler HP, Gasson J, Ranyard J, Souza L, Shepard M, Munker R. Recombinant human TNF alpha stimulates production of granulocyte colony-stimulating factor. Blood 1987; 70: 55–9.

    PubMed  Google Scholar 

  46. Louvhaug D, Pelus LM, Nordlie EM, Boyum A, Moore MAS. Monocyte conditioned medium and interleukin 1 induce granulocyte-macrophage colony-stimulating factor production in the adherent cell layer of murine bone marrow cultures. Exp Hematol 1986; 14: 1037–42.

    PubMed  Google Scholar 

  47. Fibbe WE, Van Damme J, Billiau A, et al. Human fibroblasts produce granulocyte-CSF, macrophage-CSF, and granulocyte-macrophage-CSF following stimulation by interleukin-1 and poly(rI).poly(rC). Blood 1988; 72: 860–6.

    PubMed  Google Scholar 

  48. Kaushansky K, Broudy VC, Harlan JM, Adamson JW. Tumor necrosis factor-α and tumor necrosis factor-β (lymphotoxin) stimulate the production of granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in vivo. J Immunol 1988; 141: 3410–5.

    PubMed  Google Scholar 

  49. Fibbe WE, Daha MR, Hiemstra PS, et al. Interleukin 1 and poly(rI)poly(rC) induce production of granulocyte CSF, macrophage CSF, and granulocyte-macrophage CSF by human endothelial cells. Exp Hematol 1989; 17: 229–34.

    PubMed  Google Scholar 

  50. Seelentag W, Mermod J-J, Vassalli P. Interleukin 1 and tumor necrosis factor-α additively increase the levels of granulocyte-macrophage and granulocyte colony-stimulating factor (CSF) mRNA in human fibroblasts. Eur J Immunol 1989; 19: 209–12.

    PubMed  Google Scholar 

  51. Van Damme J, Cayphas S, Opdenakker G, Billiau A, Van Snick J. Interleukin 1 and poly(r1).poly(rC) induce production of a hybridoma growth factor by human fibroblasts. Eur J Immunol 1987; 17: 1–7.

    PubMed  Google Scholar 

  52. Sironi M, Breviario F, Proserpio P, et al. IL-1 stimulates IL-6 production in endothelial cells. J Immunol 1989; 142: 549–53.

    PubMed  Google Scholar 

  53. Warner SJC, Auger KR, Libby P. Interleukin 1 induces interleukin 1 II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J Immunol 1987; 139: 1911–7.

    PubMed  Google Scholar 

  54. Ghezzi P, Dinarello CA. IL-1 induces IL-1. III. Specific inhibition of IL-1 production by IFN-gamma1. J Immunol 1988; 140: 4238–44.

    PubMed  Google Scholar 

  55. Mauviel A, Temime N, Charron D, Loyau G, Pujol J-P. Interleukin-1α andβ induce interleukin-1β gene expression in human dermal fibroblasts. Biochem Biophys Res Commun 1988; 156: 1209–14.

    PubMed  Google Scholar 

  56. Walther Z, May LT, Sehgal PB. Transcriptional regulation of the interferon-β2/B cell differentiation factor BSF-2/hepatocyte-stimulating factor gene in human fibroblasts by other cytokines. J Immunol 1988; 140: 974–7.

    PubMed  Google Scholar 

  57. Bagby GC, Wilkinson B, McCall E, Lee M. Abnormalities of the hematopoietic regulatory network. In: Tavassoli M, Zanjani ED, Ascensao JL, Abraham NG, Levine AS, eds. Molecular Biology of Hemopoiesis. NY: Plenum Press, 1988. p. 255.

    Google Scholar 

  58. Bagby GC, Dinarello CA, Neerhout RC, Ridgway D, McCall E. Interleukin-1 dependent paracrine granulopoiesis in chronic granulocytic leukemia of the juvenile type. J Clin Invest 1988; 82: 1430–6.

    PubMed  Google Scholar 

  59. Dinarello CA, Bernheim HA, Cannon JG, et al. Purified,35MET3;-LEU-labelled human monocyte interleukin-1 (IL-1) with endogenous pyrogen activity. Brit J Rheumatol 1985; 24 (Suppl 1): 59–64.

    Google Scholar 

  60. Marston B, Campbell J, Bagby GC. The IL-1/CSF granulopoietic regulatory network in humans with reactive neutrophilic leukocytosis. Clin Res 1988; 36: 185. (Abstract)

    Google Scholar 

  61. Neta R, Sztein MB, Oppenheim JJ, Gillis S, Douches SD. The in vivo effects of interleukin 1. I. Bone marrow cells are induced to cycle after administration of interleukin 1. J Immunol 1987; 139: 1861–6.

    PubMed  Google Scholar 

  62. Stork LC, Peterson VM, Rundus CH, Robinson WA. Interleukin-1 enhances murine granulopoiesis in vivo. Exp Hematol 1988; 16: 163–7.

    PubMed  Google Scholar 

  63. Sawada N. Hepatocytes from old rats retain responsiveness ofc-myc expression to EGF in primary culture but do not enter S phase. Exp Cell Res 1989; 181: 584–8.

    PubMed  Google Scholar 

  64. Sekigawa I, Noguchi K, Hasegawa K, Hirose S, Sato H, Shirai T. B cell hyperresponsiveness to interleukin 2 and the age-associated decline in murine lupus. Clin Immunol Immunopathol 1989; 51: 172–84.

    PubMed  Google Scholar 

  65. Bauer Ea, Silverman N, Busiek DF, Kronberger A, Deuel TF. Diminished response of Werner's syndrome fibroblasts to growth factors PDGF and FGF. Science 1986; 234: 1240–3.

    PubMed  Google Scholar 

  66. Stanulis-Praeger BM, Gilchrest BA. Growth factor responsiveness declines during adulthood for human skin-derived cells. Mech Ageing and Devel 1986; 35: 185–98.

    Google Scholar 

  67. Nagel JE, Chopra RK, Chrest FJ, et al. Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J Clin Invest 1988; 81: 1096–1102.

    PubMed  Google Scholar 

  68. Lee MA, Segal GM, Bagby GC. The hematopoietic microenvironment in the elderly: efects in IL-1 induced CSF expression. Exp Hematol 1989; 17: 952–6.

    PubMed  Google Scholar 

  69. Lindholm D, Heumann R, Hengerer B, Thoenen H. Interleukin 1 increases stability and transcription of mRNA encoding nerve growth factor in cultured rat fibroblasts. J Biol Chem 1988; 263: 16348–51.

    PubMed  Google Scholar 

  70. Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 1987; 330: 658–59.

    PubMed  Google Scholar 

  71. Beck G, Vasta GR, Marchalonis JJ, Habicht GS. Characterization of interleukin-1 activity in tunicates. Comp Biochem Physiol[B]; 1989; 92B: 93–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagby, G.C. Interleukin-1, stromal cells, granulopoiesis, and the inflammatory response. Biotherapy 1, 255–261 (1989). https://doi.org/10.1007/BF02171001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02171001

Keywords

Navigation